Методы определения абсолютного и относительного возраста горных пород

Автор работы: Пользователь скрыл имя, 08 Февраля 2013 в 08:04, курсовая работа

Краткое описание

Возраст Земли как планеты по последним данным оценивается ~ 4,6 млрд. лет. Изучение метеоритов и лунных пород также подтверждает эту цифру. Однако самые древние породы Земли, доступные непосредственному изучению, имеют возраст около 3,8 млрд. лет. Поэтому весь более древний этап истории Земли носит название до геологической стадии. Объектом же геологического изучения является история Земли за последние 3,8 млрд. лет, которая выделяется в ее геологическую стадию.
Для выяснения закономерностей и условий образования г.п. необходимо знать последовательность их образования и возраст, т.е. установить их геологическую хронологию.

Содержание

Введение
1. История развития методов определения абсолютного возраста Земли и отдельных этапов в истории ее становления.......................................................5
2. Геологическое время....................................................................................7
3. Методы определения абсолютного возраста горных пород..................8
4. Методы определения относительного возраста горных пород............14
Заключение.............................................................................................................21
Список использованных источников...................................................................22
Приложения...........................................................................................................23

Прикрепленные файлы: 1 файл

курсовая.docx

— 71.70 Кб (Скачать документ)

 

Литологический метод основан на изучении и сравнении состава пород в разных обнажениях (естественных- в склонах рек, озер, морей, искусственных - карьерах, котлованах и т.д.). На ограниченной по площади территории, отложения одинакового вещественного состава (т.е. состоят из одинаковых минералов и горных пород) , могут быть одновозрастными. При сопоставлении разрезов различных обнажений используют маркирующие горизонты, которые отчетливо выделяются среди других пород и стратиграфиески выдержаны на большой площади.

 

Тектонический метод основан на том, что мощные процессы деформации г.п. проявляются (как правило) одновременно на больших территориях, поэтому одновозрастные толщи имеют примерно одинаковую степень дислоцированности (смещения). В истории Земли осадконакопления периодически сменялись складчатостью и горообразованием. Возникшие горные области разрушались, а на выровненную территорию вновь наступало море, на дне которого уже несогласно накапливались толщи новых осадочных г.п. в этом случае различные несогласия служат границами, подразделяющими разрезы на отдельные толщи.

 

Геофизические методы основаны на использовании физических характеристик отложений (удельного сопротивления, природной радиоактивности, остаточной намагниченности г.п. и т.д.) при их расчленении на слои и сопоставлении. Расчленение пород в буровых скважинах на основании измерений удельного сопротивления г.п. и пористости называется электрокаротаж, на основании измерений их радиоактивности - гамма-каротаж. Изучение остаточной намагниченности г.п. называют палеомагнитным методом; он основан на том, что магнитные минералы, выпадая в осадок, распластаются в соответствии с магнитным полем Земли той эпохи которая, как известно, постоянно менялась в течении геологического времени. Эта ориентировка сохраняется постоянно, если порода не подвергается нагреванию выше 500°С (т.н. точка Кюри) или интенсивной деформации и перекристаллизации. Следовательно, в различных слоях направление магнитного поля будет различным. Палеомагнитизм позволяет т.о. сопоставлять отложения значительно удаленные друг от друга (западное побережье Африки и восточное побережье Латинской Америки).

 

Биостратиграфические или палеонтологические методы состоят в определении возраста г.п. с помощью изучения ископаемых организмов (подробно палеонтологические методы будут рассмотрены в следующей лекции).

Геохронология и шкала абсолютного  возраста. Стратиграфическая шкала отражает лишь последовательность напластования пород и потому может использоваться только для обозначения относительного возраста различных слоев. Темпы радиоактивного распада некоторых элементов незначительны. Это позволяет определять возраст древних событий путем измерения содержания таких элементов и продуктов их распада в конкретном образце. Поскольку скорость радиоактивного распада не зависит от параметров окружающей среды, можно определять возраст пород, находящихся в любых геологических условиях. Наиболее часто применяются уран-свинцовый и калий-аргоновый методы. Уран-свинцовый метод позволяет произвести точное датирование на основе замеров концентрации радиоизотопов тория (232Th) и урана (235U и 238U). При радиоактивном распаде образуются изотопы свинца (208Pb, 207Pb и 206Pb). Однако породы, содержащие эти элементы в достаточных количествах, встречаются довольно редко. Калий-аргоновый метод базируется на весьма медленном радиоактивном превращении изотопа 40K в 40Ar, что позволяет датировать события, имеющие возраст в несколько миллиардов лет, по соотношению в породах этих изотопов. Значительное преимущество калий-аргонового метода заключается в том, что калий, весьма распространенный элемент, присутствует в минералах, образованных во всех геологических обстановках - вулканической, метаморфической и осадочной. Однако возникающий в результате радиоактивного распада инертный газ аргон химически не связан и происходит его утечка. Следовательно, для датирования могут быть надежно использованы только те минералы, в которых он хорошо удерживается. Несмотря на этот недостаток, калий-аргоновый метод используется весьма широко. Абсолютный возраст самых древних пород на планете составляет 3,5 млрд. лет. В земной коре всех материков представлены очень древние породы, поэтому вопрос, какой из них самый древний, даже не возникает. Возраст метеоритов, упавших на Землю, по определениям калий-аргоновым и уран-свинцовым методами, составляет примерно 4,5 млрд. лет. По оценкам геофизиков, основывающимся на данных уран-свинцового метода, Земля тоже имеет возраст ок. 4,5 млрд. лет. Если эти оценки верны, то в геологической летописи имеется пробел в 1 млрд. лет, соответствующий важному раннему этапу эволюции Земли. Возможно, самые ранние свидетельства были уничтожены или стерты каким-либо образом, когда Земля находилась в расплавленном состоянии. Вполне вероятно также, что древнейшие породы Земли были денудированы или перекристаллизовались за многие миллионы лет.

 

Абсолютная  геохронология устанавливает возраст  г.п. в единицах времени. Определение  абсолютного возраста необходимо для  корреляции и сопоставления биостратиграфических подразделений различных участков Земли, а также установления возраста лищенных палеонтологических остатков фанерозойских и долембрийских пород.

К методам  определения абсолютного возраста пород относятся методы ядерной (или изотопной геохронологии) и  не радиологические методы

Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста г.п., в основе которых лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала (соотв. И породы).

Разработано большое число радиоактивных  методов определения абсолютного  возраста: свинцовый, калиево-аргоновый, рубидиево-стронциевый, радиоуглеродный и др. (выше установленный возраст Земли 4,6 млрд. лет не установлен с применением свинцового метода).

Темпы радиоактивного распада  некоторых элементов незначительны. Это позволяет определять возраст  древних событий путем измерения  содержания таких элементов и  продуктов их распада в конкретном образце. Поскольку скорость радиоактивного распада не зависит от параметров окружающей среды, можно определять возраст пород, находящихся в  любых геологических условиях. Наиболее часто применяются уран-свинцовый  и калий-аргоновый методы. Уран-свинцовый  метод позволяет произвести точное датирование на основе замеров концентрации радиоизотопов тория (232Th) и урана (235U и 238U). При радиоактивном распаде  образуются изотопы свинца (208Pb, 207Pb и 206Pb). Однако породы, содержащие эти  элементы в достаточных количествах, встречаются довольно редко. Калий-аргоновый  метод базируется на весьма медленном  радиоактивном превращении изотопа 40K в 40Ar, что позволяет датировать события, имеющие возраст в несколько миллиардов лет, по соотношению в породах этих изотопов. Значительное преимущество калий-аргонового метода заключается в том, что калий, весьма распространенный элемент, присутствует в минералах, образованных во всех геологических обстановках - вулканической, метаморфической и осадочной. Однако возникающий в результате радиоактивного распада инертный газ аргон химически не связан и происходит его утечка. Следовательно, для датирования могут быть надежно использованы только те минералы, в которых он хорошо удерживается. Несмотря на этот недостаток, калий-аргоновый метод используется весьма широко. Абсолютный возраст самых древних пород на планете составляет 3,5 млрд. лет. В земной коре всех материков представлены очень древние породы, поэтому вопрос, какой из них самый древний, даже не возникает. Возраст метеоритов, упавших на Землю, по определениям калий-аргоновым и уран-свинцовым методами, составляет примерно 4,5 млрд. лет. По оценкам геофизиков, основывающимся на данных уран-свинцового метода, Земля тоже имеет возраст ок. 4,5 млрд. лет. Если эти оценки верны, то в геологической летописи имеется пробел в 1 млрд. лет, соответствующий важному раннему этапу эволюции Земли. Возможно, самые ранние свидетельства были уничтожены или стерты каким-либо образом, когда Земля находилась в расплавленном состоянии. Вполне вероятно также, что древнейшие породы Земли были денудированы или перекристаллизовались за многие миллионы лет

Изотопная геохронология - направление в Науках о Земле, в задачи которого входит определение времени геологических событий методами, основанными на радиоактивном распаде нестабильных изотопов. Практически наиболее широко применяются при исследовании земных горных пород и минералов калий-аргоновый, уран-свинцовый, рубидий-стронциевый, самарий-неодимовый и рений-осмиевый методы изотопной геохронологии. Реже для геохронологических целей применяются лютеций-гафниевый, лантан-цериевый, калий-кальциевый и другие уникальные методы - более сложные в практическом применении, но дающие иногда важную независимую информацию. Методами изотопной геохронологии можно непосредственно определять время формирования магматических, метаморфических, метасоматических, жильных и, в ряде случаев, осадочных пород и минералов. Изотопно-геохронологические методы используются и при исследованиях различных внеземных объектов - метеоритов и лунных образцов, что тесно связывает изотопную геохронологию с космохронологией.

Т.к. радиоактивный  распад материнских нуклидов (232Th, 238U, 235U, 190Pt, 187Re, 176Lu, 147Sm, 87Rb, 40K) приводит к  изменению распространённости дочерних изотопов - продуктов распада и, таким  образом, к изменению изотопного состава свинца, осмия, гафния, неодима, стронция, кальция, аргона, гелия, что  теснейшим образом связывает  изотопную геохронологию с изотопной геохимией.

Одной из важнейших и успешно решаемых задач изотопной геохронологии  является привязка к реальному геологическому времени относительной хронологической  шкалы, основанной на данных стратиграфии и палеонтологии.

 

Устаревший  синоним - абсолютная геохронология.

 

4. Относительный возраст горных пород и методы его определения.

 
Определение относительного возраста пород – это установление, какие породы образовались раньше, а какие – позже.

Определение относительного возраста магм.

Методы - для определения возраста осадочных  пород) осложнено отсутствием палеонтологических остатков. Возраст эффузивных пород, залегающих совместно с осадочными устанавливается по соотношению  к осадочным породам.

Относительный возраст интрузивных пород определяется по соотношению магматических пород  и вмещающих осадочных пород, возраст которых установлен.

Определение относительного возраста метармофических пород аналогично определению относительного возраста магматических пород.

 
Относительный возраст осадочных  г.п. устанавливается с помощью  геолого-стратиграфических (стратиграфического, литологического, тектонического, геофизических) и биостратиграфических методов.  
 
Стратиграфический метод основан на том, что возраст слоя при нормальном залегании определяется - нижележащие их слои являются более древними, а вышележащие более молодыми. Этот метод может быть использован и при складчатом залегании слоев. Не может быть использован при опрокинутых складках.  
 
Литологический метод основан на изучении и сравнении состава пород в разных обнажениях (естественных- в склонах рек, озер, морей, искусственных – карьерах, котлованах и т.д.). На ограниченной по площади территории, отложения одинакового вещественного состава (т.е. состоят из одинаковых минералов и горных пород) , могут быть одновозрастными. При сопоставлении разрезов различных обнажений используют маркирующие горизонты, которые отчетливо выделяются среди других пород и стратиграфически выдержаны на большой площади.  
 
Тектонический метод основан на том, что мощные процессы деформации г.п. проявляются (как правило) одновременно на больших территориях, поэтому одновозрастные толщи имеют примерно одинаковую степень дислоцированности (смещения). В истории Земли осадконакопления периодически сменялись складчатостью и горообразованием.  
 
Возникшие горные области разрушались, а на выровненную территорию вновь наступало море, на дне которого уже несогласно накапливались толщи новых осадочных г.п. в этом случае различные несогласия служат границами, подразделяющими разрезы на отдельные толщи.  
 
Геофизические методы основаны на использовании физических характеристик отложений (удельного сопротивления, природной радиоактивности, остаточной намагниченности г.п. и т.д.) при их расчленении на слои и сопоставлении.  
 
Расчленение пород в буровых скважинах на основании измерений удельного сопротивления г.п. и пористости называется электрокаротаж, на основании измерений их радиоактивности - гамма-каротаж.  
 
Изучение остаточной намагниченности г.п. называют палеомагнитным методом; он основан на том, что магнитные минералы, выпадая в осадок, распластаются в соответствии с магнитным полем Земли той эпохи которая, как известно, постоянно менялась в течении геологического времени. Эта ориентировка сохраняется постоянно, если порода не подвергается нагреванию выше 500°С (т.н. точка Кюри) или интенсивной деформации и перекристаллизации. Следовательно, в различных слоях направление магнитного поля будет различным. Палеомагнитизм позволяет т.о. сопоставлять отложения значительно удаленные друг от друга (западное побережье Африки и восточное побережье Латинской Америки).  
 
Биостратиграфические или палеонтологические методы состоят в определении возраста г.п. с помощью изучения ископаемых организмов (подробно палеонтологические методы будут рассмотрены в следующей лекции).  
 
Определение относительного возраста магм. И метам. Г.п. (все выше охарактер. Методы – для определения возраста осадочных пород) осложнено отсутствием палеонтологических остатков. Возраст эффузивных пород, залегающих совместно с осадочными устанавливается по соотношению к осадочным породам.  
 
Относительный возраст интрузивных пород определяется по соотношению магматических пород и вмещающих осадочных пород, возраст которых установлен.  
 
Определение относительного возраста метармофических пород аналогично определению относительного возраста магматических пород.

 

Методы восстановления физико-географической обстановки прошлых геологических  эпох (основы палеогеографии)

 

Другой  важной задачей исторической геологии является восстановление физико-географической обстановки, в которой образовались породы. В процессе решения этой задачи геолог восстанавливает палеогеографические  особенности прошлых эпох: характер древнего рельефа на суше или на морском дне, очертания береговой  линии, распределение осадков на морском дне или в пониженностях рельефа на суше, климат, глубину моря, соленость и температуру морской воды, состав органического мира и т. д. Все эти и многие другие палеогеографические вопросы решают с помощью фациального анализа.

Фациальный  анализ — метод восстановления физико-географической обстановки прошлого при помощи всестороннего  изучения осадочных горных пород. Название этого метода происходит от термина  «фация», введенного в геологию швейцарским  ученым А. Грессли в 1838 г. Изучая юрские отложения в Юрских горах, Грессли установил, что хорошо прослеживающиеся здесь на большом расстоянии слои сохраняют один и тот же литологический состав и сходный комплекс окаменелостей не на всем своем протяжении, а только в пределах определенного участка. Часть слоя горной породы, которая на всем участке своего распространения имеет один и тот же состав и сходный комплекс окаменелостей, Грессли и назвал фацией. Фации испытывают изменения по мере движения по слою, эти изменения называются фациальными.

Фации могут  быть ископаемыми, представленными  горной породой, и современными —  в виде еще не уплотненного осадка. Среди ископаемых и современных  фаций выделяют два главных типа: морские и континентальные. Каждая фация формируется на определенном участке морского дна или суши в определенных физико-географических условиях. Поэтому, изучая ту или иную фацию, можно восстановить не только место, но и условия ее формирования: климат, глубину морского дна, температуру, соленость морской воды и т. д. Изучая несколько одновозрастных фаций, можно сделать выводы о физико-географических условиях времени накопления этих фаций  на всей площади их распространения.

При фациальном анализе подробно изучают состав осадочной породы (литология) и выясняют условия ее образования, а также  состав ископаемой фауны и флоры  и выясняют условия их обитания. Поэтому фациальный анализ распадается на две части: литологический анализ — метод восстановления палеогеографической обстановки по породам и биономический анализ — метод восстановления палеогеографической обстановки по окаменелостям. При проведении фациального анализа геологи широко используют принцип актуализма — принцип восстановления процессов и явлений прошлых эпох при помощи прямой аналогии с процессами и явлениями современности. Этот принцип стали использовать еще в начале прошлого столетия. В России его применял Д. И. Соколов, а в Западной Европе — Ч. Лайель. Изучая современные фации, геологи используют полученные данные для расшифровки условий формирования ископаемых фаций. Используя данные о современных геологических явлениях для объяснения явлений геологического прошлого, нужно всегда учитывать непрерывное развитие и изменение природы. Чем дальше от нас геологическое прошлое, тем труднее провести аналогию между настоящим и прошлым, тем существеннее должна быть поправка в окончательные результаты палеогеографических выводов.

 

Основы фациального анализа  морских отложений

 

Литологический  анализ. При проведении литологического  анализа геолог прежде всего должен восстановить картину распределения  осадков на морском дне. Для этого  ему необходимо знать закономерности накопления осадков в современных  морях и океанах.

Моря  и океаны — главные области  осадконакопления. Источниками накопления осадков являются снос с суши, вулканическая  деятельность и космическая пыль. Чтобы понять закономерности распределения  осадков на морском дне, необходимо принимать во внимание два первых источника: снос с суши и вулканическую  деятельность. Главным источником является снос с суши, он происходит повсеместно  и в колоссальных размерах. Реки выносят в моря и океаны огромное количество обломочного и растворенного  вещества. Например, годовой вынос  Амазонки составляет 3787 км3, Конго — 1260, Миссисипи — 600, Волги — 255 км3 взвешенного материала. Все моря и океаны ежегодно получают за счет рек около 12,5 млрд. т взвешенного и около 5 млрд. т растворенного вещества. Эти цифры поражают своей величиной.

Вынесенный  реками материал осаждается в пределах шельфа, в зоне накопления терригенных  осадков (происшедших за счет размыва  суши, от латинского слова terra — земля). Терригенные осадки закономерно распределяются по морскому дну: у берега отлагаются галька и грубые пески, дальше от берега — мелкие пески, затем песчанистая глина и наконец в более удаленных от берега местах тонкие глинистые осадки. Здесь же накапливаются хемогенные и органогенные осадки, но в процентном отношении их очень мало по сравнению с терригенными. В зависимости от сноса с суши зона распространения терригенных осадков в разных морях и океанах имеет различную ширину, но она является повсюду зоной максимального осадконакопления. Обширные пространства океанического дна являются зоной накопления пелагических осадков. Здесь выпадают из толщи морской воды хемогенные и органогенные осадки, так как терригенные сюда не достигают.

Изложенная  схема распределения литологических типов осадков на морском дне  проста и понятна. Однако она является идеализированной, так как в подавляющем  большинстве случаев распределение  осадков сильно нарушается из-за целого ряда причин, которые геолог должен учитывать при фациальном анализе.

По одному только литологическому составу  нельзя безошибочно определить участок  морского дна, где та или иная порода образовалась. Поэтому параллельно  с литологическим анализом проводится биономический анализ. Это позволяет сделать правильные выводы о распределении осадков на дне древних морей.

Информация о работе Методы определения абсолютного и относительного возраста горных пород