Автор работы: Пользователь скрыл имя, 29 Ноября 2014 в 18:06, курсовая работа
Тема магматические процессы и рельефообразования достаточно плотно рассматривается в вузах, на географических и геологических специальностях. В 6 классе данная тема рассматривается на уроках «Горы» и «Равнины». И так же на протяжении всего школьного курса географии на уроках, связанных с темой «Рельеф».
Цель: выявление особенностей магматического процесса и рельефообразования.
Введение
Глава I. Морфотектонические процессы и их роль в образовании рельефа
Энергетические движения и мегарельеф
Складчатые деформации на платформах и геосинклиналях
Разрывные дислокации и мезоформы рельефа
Глава II. Магматизм и его роль в образовании рельефа земной поверхности
2.1. Интрузивный магматизм и его выражение рельефа
2.2 . Эффузивный магматизм и вулканический рельеф
Заключение
Литература
Покровы, или шарьяжи,- важные структурные элементы земной коры и, как сейчас выясняется, не только ее самой верхней части. Покровные тектонические нарушения могут образовываться различными путями: в процессе складчатости, т.е. быть синскладчатыми, образуясь на подвернутых крыльях лежачих складок или в результате поддвига под складчатое сооружение жесткого блока, массива и т. д. Они могут быть и доскладчатыми, а затем сминаться в складки или формироваться после складчатости. В настоящее время известны покровы с доказанной амплитудой более 200 км. Так, Скандинавские каледонские складчатые сооружения надвинуты на метаморфические докембрийские породы Балтийского щита на 150-200 км, и последние обнажаются в ряде тектонических окон. Кристаллические породы Аппалачских гор по горизонтальной поверхности надвинуты на неметаморфизованные нижнепалеозойские толщи более чем на 200 км. В Скалистых горах США в штате Вайоминг установлен надвиг, уходящий под углом около 40o до глубины в 24 км.
Тектоническое раздробление аллохтона по его сместителю - поверхности срыва - приводит к формированию тектонической брекчии или смеси - меланжа, состоящего из перетертых, сдавленных обломков, как аллохтона, так и автохтона со следами тектонических перемещений. Часто меланж образуется в офиолитовой ассоциации, что значительно облегчается увеличением объема ультраосновных пород при их серпентинизации, которые действуют как "смазка", улучшающая скольжение обломков относительно друг друга. Следует заметить, что олистострома может сформироваться за счет меланжа и, наоборот, меланж может развиваться по олистостроме.
Строение поверхности сместителя может быть разным. В простейших случаях он представлен плоскостью, по которой происходит смещение пород. Нередко на такой плоскости развиваются так называемые зеркала скольжения или трения - блестящие, как бы отполированные поверхности с бороздами и уступчиками отрыва, указывающие направление перемещения. Бороздки возникают в том случае, если в плоскость разрыва попадают мелкие обломки пород, которые, вдавливаясь, оставляют на плоскости царапину, бороздку, исчезающую, когда обломок разрушится. В более крупных разрывах в зоне сместителя образуются брекчии трения или милониты (греч. "милоc"-мельница), представляющие собой перетертые обломки пород крыльев. Как правило, благодаря проницаемости для растворов милониты ожелезнены, окремнены, по ним развивается кальцит и т.д. Мощность милонитов может быть разной: от первых сантиметров до многих сотен метров.
Глава I I. Магматизм и его роль в образовании рельефа земной поверхности
2.1. Интрузивный магматизм и его выражение рельефа
Первичные магмы, образуясь на различных глубинах, имеют тенденцию формироваться в большие массы, которые продвигаются в верхние горизонты земной коры, где литостатическое давление меньше. При определенных геологических и, в первую очередь, тектонических условиях магма не достигает поверхности Земли и застывает (кристаллизуется) на различной глубине, образуя тела неодинаковой формы и размера - интрузивы. Любое интрузивное тело, будучи окруженным вмещающими породами или рамой, взаимодействуя с ними, обладает двумя контактовыми зонами. Влияние высокотемпературной, богатой флюидами магмы на окружающие интрузивное тело породы приводит к их изменениям, выражающимся по-разному - от слабого уплотнения и дегидратации до полной перекристаллизации и замещения первичных пород. Такая зона шириной от первых сантиметров до десятков километров называется зоной экзоконтакта, т.е. внешним контактом (рис. 11). С другой стороны, сама внедряющаяся магма, особенно краевые части магматического тела, взаимодействуют с вмещающими породами, быстрее охлаждаясь, частично ассимилируя породы рамы, в результате чего изменяются состав магмы, ее структура и текстура. Такая зона измененных магматических пород в краевой части интрузива называется зоной эндоконтакта, т.е. внутренней зоной.
|
Рис.11. Схема строения гранитного штока: 1- шток, 2- вмещающие породы (рама интрузива), 3- зона экзоконтакта, 4- зона эндоконтакта, 5- "провесы" кровли |
В зависимости от глубины формирования интрузивные массивы подразделяются на приповерхностные, или субвулканические (последнее слово означает, что магма почти подошла к поверхности, но все-таки не вышла на нее, т.е. образовался "почти вулкан" или субвулкан) - до первых сотен метров; среднеглубинные, или гипабиссальные,- до 1-1,5 км и глубинные, или абиссальные,- глубже 1-1,5 км. Подобное разделение не очень строгое, но в целом достаточно отчетливое. Глубинные породы, застывавшие медленно, обладают полнокристаллической структурой, а приповерхностные, в которых падение температуры было быстрым,- порфировой, очень похожей на структуру вулканических пород.
По отношению к вмещающим породам интрузивы подразделяются на согласные и несогласные. Несогласные интрузивные тела пересекают, прорывают пласты вмещающих пород. К наиболее распространенным несогласным телам относятся дайки, длина которых во много раз больше ширины, а плоскости эндоконтактов практически параллельны (рис. 12). Дайки обладают длиной от десятков метров до сотен километров и шириной от первых десятков сантиметров до 5-10 км и внедряются по ослабленным зонам коры - трещинам и разломам. Важную роль играет также процесс гидравлического разрыва, связанный с давлением поднимающегося магматического расплава, так как явление тектонического растяжения, сопровождающегося образованием зияющих трещин отрыва, может иметь место лишь на глубинах до 1,5-3 км. Глубже, где как раз и зарождаются широко распространенные базальтовые дайки, наличие пустот исключено, поэтому только гидроразрыв может обеспечить раздвигание пород и внедрение магмы. Дайки могут быть одиночными либо группироваться в кольцевые или радиальные рои параллельных даек. Радиальные и кольцевые дайки часто приурочены к интрузивным телам и вулканам, когда сказывается распирающее давление магмы на вмещающие породы и последние растрескиваются с образованием кольцевых и радиальных трещин. Кольцевые дайки могут быть не только вертикальными, но и коническими, как бы сходящимися к магматическому резервуару на глубине. Комплексы параллельных даек развиты в современных срединно-океанских хребтах в зонах спрединга, т.е. там, где активно происходит тектоническое растяжение земной коры. От даек следует отличать магматические жилы, имеющие неправильную ветвистую форму и гораздо меньшие размеры.
|
Рис. 12. Формы интрузивных тел: 1- дайки, 2- штоки, 3- батолит, 4- гарполит, 5- многоярусные силлы, 6- лополит, 7- лакколит, 8- магматический диапир, 9- факолит, 10- бисмалит |
Широким распространением пользуются и штоки, столбообразные интрузивы изометричной формы с крутыми контактами, площадью менее 100-150 км2.
Крупные гранитные интрузивы
площадью во многие сотни и
тысячи км2 называются батолитами.
Наблюдая за крутыми, несогласными
с вмещающими породами
Согласные интрузивы обладают разнообразной формой. Наиболее широко в платформенных областях распространены среди них силлы, или пластовые интрузивы, залегающие среди слоев параллельно их напластованию. Широко развиты базальтовые силлы в Тунгусской синеклизе Сибирской платформы, где они образуют многоэтажные системы плоских линзовидных интрузивов, соединенных узкими и тонкими подводящими каналами. Мощность силлов колеблется от первых десятков сантиметров до сотен метров. Силлы часто дифференцированы, и тогда в их подошве скапливаются более тяжелые минералы ранней кристаллизации. Силлы образуются в условиях тектонического растяжения, и общее увеличение мощности слоистых толщ за счет внедрения в них пластовых интрузивов может достигать многих сотен метров и даже первых километров. При этом слои вмещающих пород не деформируются, а лишь перемещаются по вертикали.
Лополит - чашеобразный согласный интрузив, залегающий в синклиналях и мульдах. Размеры лополитов в диаметре могут достигать десятков километров, а мощность - многих сотен метров. Как правило, лополиты развиты в платформенных структурах, сложены породами основного состава и формируются в условиях тектонического растяжения и опускания. Крупнейшие дифференцированные лополиты - Бушвельдский в Южной Америке и Сёдбери в Канаде.
Лакколиты представляют
Существуют и другие менее
распространенные формы
Проблема пространства в интрузивном магматизме обсуждается уже много десятилетий, и она особенно непроста, когда дело касается огромных гранитных батолитов. В других случаях этот вопрос решается легче. Когда речь идет о внедрении в более высокие горизонты земной коры магматического расплава, то в его продвижении вверх играют роль разные силы и процессы, но, по-видимому, одними из важнейших являются тектонические обстановки и структура вмещающих пород. Вполне естественно, что магма движется туда, где давление меньше, т.е. в зоны, тектонически ослабленные, возникающие при образовании разрывов, в сводовых частях антиклинальных складок, в смыкающем крыле флексур, в краевых зонах прогибов, синеклиз, впадин и т. д. Именно в таких структурах, находящихся в обстановке тектонического растяжения, и формируются интрузивы. Характерны в этом отношении силлы мощностью в сотни метров, внедряющиеся в слоистые породы, подобно ножу в книжные листы, и раздвигающие пласты, практически не деформируя их. Образование таких многоэтажных пластовых интрузивов возможно только в случае общего растяжения слоистой толщи пород.
Важную роль играет и
Существенными являются
Внутреннее строение интрузивов выявляется по форме их контактов и по ориентированным первичным текстурам, возникающим в магматическом теле еще тогда, когда оно находилось в жидком состоянии, связанном с ориентировкой минералов, струй магмы различного состава и вязкости, направленной кристаллизации и т. д. Как правило, они параллельны экзоконтактам. При остывании магматических интрузивных тел возникают трещины, которые располагаются вполне закономерно по отношению к первичным текстурам течения. Изучая эти трещины, удается восстановить первичную структуру интрузива, даже если не видно его контактовых зон.
2.2. Эффузивный магматизм и вулканический рельеф
Вулканический процесс — это комплекс явлений, связанных с излиянием и выбросом магматического вещества на поверхность Земли и в атмосферу. Уже в процессе движения внутри Земли магматическое вещество дифференцируется и на поверхность извергаются жидкая расплавленная лава, твердые продукты, выбрасываемые в виде глыб, обломков, округлых ядер — вулканических бомб и лапиллей (мелкие камешки), песка и пепла (пыли), и газообразные, состоящие из различных газов и паров воды. С вулканическим процессом связано создание вулканических форм рельефа, образование определенных минералов и горных пород, в том числе полезных ископаемых.
СТАДИИ ВУЛКАНИЧЕСКОГО
Проявление вулканического процесса разделяется на три стадии: раннюю, или субвулканическую; главную, именуемую вулканическим извержением, и поствулканическую, или фумарольную.
Субвулканическая стадия. В верхней мантии, в зоне астеносферы, создаются наиболее благоприятные условия для образования магмы. Существующие там температуры способны расплавить вещество астеносферы. Экспериментально доказано, что ультраосновные породы мантии плавятся при температуре 1200° С. Расплав перемещается вверх и заполняет магматический очаг (камеру), вмещающий обширный объем примерно изометрической формы. Состав расплава базальтовый, он содержит в растворенном состоянии газы и пары воды. Медленно поднимаясь вверх по ослабленным зонам или трещинам, магма расплавляет и поглощает (ассимилирует) вмещающие породы, создавая трубообразные каналы и расширяя трещины. При достижении определенной глубины, где температура магмы становится ниже 1200° С, в ней происходит выделение в отдельную фазу газа и перегретых паров воды (H-T-OH=FbO). Преобразованная магма оказывается значительно более подвижной. Она устремляется вверх. Особенно большое количество паров и газов образуется в магме на глубинах 2—3 км от поверхности Земли, вследствие чего давление там резко увеличивается. Известно, что при парообразовании происходит увеличение объема в 100 раз, при этом высвобождается огромное количество энергии, приводящее к взрыву. Газы и пары устремляются вверх, разрушая, дробя породы, преграждающие им путь, и с силой выталкивая их вверх. Вслед за ними к поверхности Земли поднимается частично или полностью дегазированный расплав. При выходе на поверхность он превращается в лаву. Движение магмы, паров и газов сопровождается неглубокими и относительно слабыми землетрясениями, очаги которых все ближе и ближе перемещаются к поверхности Земли.
Информация о работе Магматические процессы и рельефообразование