Эксплуатация нефтяных и газовых скважин

Автор работы: Пользователь скрыл имя, 25 Декабря 2013 в 16:48, реферат

Краткое описание

Все известные способы эксплуатации скважин подразделяются на следующие группы:
v фонтанный, когда нефть извлекается из скважин самоизливом;
v газлифтный — с помощью энергии сжатого газа, вводимого в скважину извне;
v насосный — извлечение нефти с помощью насосов различных типов.

Прикрепленные файлы: 1 файл

4.ЭКСПЛУАТАЦИЯ_НЕФТЯНЫХ_И_ГАЗОВЫХ_СКВАЖИН (1).doc

— 673.50 Кб (Скачать документ)

Недостатки  газлифтного метода:

¨       большие капитальные затраты;

¨       низкий КПД;

¨       повышенный расход НКТ, особенно при  применении двухрядных подъемников;

¨       быстрое увеличение расхода энергии на подъем 1 т нефти по мере снижения дебита скважин с течением времени эксплуатации.

В конечном счете, себестоимость  добычи 1 т нефти при газлифтном методе ниже за счет низких эксплуатационных расходов, поэтому он перспективен. 

 

4.2.2 Оборудования  газлифтных скважин 

 

Устье газлифтной скважины оборудуют стандартной фонтанной  арматурой, рабочее давление, которой  должно соответствовать максимальному  ожидаемому на устье скважины. Арматуру до установки на скважину опрессовывают в сборном виде на пробное давление, указанное в паспорте. После установки на устье скважины ее опрессовывают на давление, допустимое для опрессовки эксплуатационной колонны, при этом независимо от ожидаемого рабочего давления арматуру монтируют с полным комплектом шпилек и уплотнений. Под ее выкидными и нагнетательными линиями, расположенными на высоте, устанавливают надежные опоры, предотвращающие падение труб при ремонте, а также вибрацию от ударов струи.

Обвязка скважины и аппаратура, а также газопроводы, находящиеся  под давлением, должны отогреваться только паром  или горячей водой.

Для оборудования газлифтных подъемников применяют НКТ следующих  диаметров: в однорядных подъемниках — от 48 до 89 мм и редко 114 мм, в двухрядных подъемниках — для наружного ряда труб 73, 89 и 114 мм, а для внутреннего — 48, 60 и 73 мм. При выборе диаметров НКТ необходимо иметь в виду, что минимальный зазор между внутренней обсадной колонны и наружной поверхностью НКТ должен составлять 12 ¸ 15 мм. 

 

4.3 НАСОСНЫЙ  СПОСОБ ЭКСПЛУАТАЦИИ СКВАЖИН 

 

При насосном способе эксплуатации подъем нефти из скважин на поверхность осуществляется штанговыми и бесштанговыми насосами (погружные электроцентробежные насосы, винтовые насосы и др). 

 

4.3.1 Эксплуатация скважин штанговыми насосами 

 

Штанговые скважинные насосы (ШСН) обеспечивают откачку из скважин углеводородной жидкости, обводненностью до 99 % , абсолютной вязкостью до 100 мПа·с, содержанием твердых механических примесей до 0.5 %, свободного газа на приеме до 25 %, объемным содержанием сероводорода до 0.1 %, минерализацией воды до 10 г/л и температурой до 130 0С.

Две трети фонда (66 %) действующих  скважин стран СНГ (примерно 16.3 % всего объема добычи нефти) эксплуатируются ШСНУ. Дебит скважин составляет от десятков килограммов в сутки до нескольких тонн. Насосы спускают на глубину от нескольких десятков метров до 3000 м., а в отдельных скважинах на 3200 ¸ 3400 м. ШСНУ включает:

Ø      Наземное оборудование: станок-качалка (СК), оборудование устья.

Ø      Подземное оборудование: насосно-компрессорные трубы (НКТ), насосные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Отличительная особенность ШСНУ обстоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг.

Штанговая глубинная  насосная установка (Рисунок 4.4) состоит  из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске 8, сальникового уплотнения 6, сальникового штока 7, станка-качалки 9, фундамента 10 и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

Недостатками штанговых  насосов является ограниченность глубины  их подвески и малая подача нефти  из скважин. 

 

Рисунок 4.4 — Схема  установки штангового скважинного  насоса 

 

 

Штанговые скважинные насосы

По способу крепления  насосов к колонне НКТ различают  вставные (НСВ) и не вставные (НСН) скважинные насосы (Рисунок 4.5, 4.6).

У не вставных (трубных) насосов цилиндр с седлом всасывающего клапана опускают в скважину на НКТ. Плунжер с нагнетательным и всасывающим клапаном опускают в скважину на штангах и вводят внутрь цилиндра. Плунжер с помощью специального штока соединен  с шариком всасывающего клапана. Недостаток НСН — сложность его сборки в скважине, сложность и длительность извлечения насоса на поверхность для устранения какой-либо неисправности.  

 

Рисунок 4.5 — Насосы скважинные вставные

1 — впускной клапан; 2 — цилиндр; 3 — нагнетательный клапан; 4 — плунжер; 5 — штанга; 6 — замок. 

 

Вставные насосы целиком  собирают на поверхности земли и  опускают в скважину внутрь НКТ на штангах. НСВ состоит из трех основных узлов: цилиндра, плунжера и  замковой опоры цилиндра.

В НСН для извлечения цилиндра из скважины необходим подъем всего оборудования (штанг с клапанами, плунжером и НКТ). В этом коренное отличие между НСН и НСВ. При  использовании вставных насосов  в 2 ¸ 2.5 раза ускоряются спускоподъемные операции при ремонте скважин, и существенно облегчается труд рабочих. Однако производительность вставного насоса при трубах данного диаметра всегда меньше производительности не вставного.  

 

Рисунок 4.6 — Невставные скважинные насосы

1 — всасывающий клапан; 2 — цилиндр; 3 — нагнетательный клапан; 4 — плунжер; 5 — захватный шток; 6 — ловитель

Насос НСВ спускается на штангах. Крепление (уплотнение посадками) происходит на замковой опоре, которая предварительно опускается на НКТ. Насос извлекается из скважины при подъеме только колонны штанг. Поэтому НСВ целесообразно применять в скважинах с небольшим дебитом и при больших глубинах спуска.

Невставной (трубный) насос  представляет собой цилиндр, присоединенный к НКТ и вместе с ними спускаемый в скважину, а плунжер спускают и поднимают на штангах. НСН целесообразны в скважинах с большим дебитом, небольшой глубиной спуска и большим межремонтным периодом.

Насосная  штанга предназначена для передачи возвратно-поступательного движения плунжер насоса. Штанга представляет собой стержень круглого сечения с утолщенными головками на концах (Рисунок 4.7). Выпускаются штанги из легированных сталей диаметром (по телу) 16, 19, 22, 25 мм и длиной 8 м — для нормальных условий эксплуатации. 

 

Рисунок 4.7 — Насосная штанга и соединительная муфта 

 

Для регулирования длины  колонн штанг с целью нормальной посадки плунжера в цилиндр насоса имеются также укороченные штанги (футовки) длиной 1; 1.2; 1.5; 2 и 3 м.

Штанги соединяются  муфтами. Имеются также трубчатые (наружный диаметр 42 мм, толщина 3.5 мм).

Начали выпускать насосные штанги из стеклопластика, отличающиеся большей коррозионной стойкостью и позволяющие снизить энергопотребление до 20 %.

Применяются непрерывные  штанги «Кород» (непрерывные на барабанах, сечение — полуэллипсное).

Особая  штанга — устьевой шток, соединяющий колонну штанг с канатной подвеской. Поверхность его полирована (полированный шток). Он изготавливается без головок, а на концах имеет стандартную резьбу. Для защиты от коррозии осуществляют окраску, цинкование и т.п., а также применяют ингибиторы.

Устьевое  оборудование насосных скважин предназначено для герметизации затрубного пространства, внутренней полости НКТ, отвода продукции скважин и подвешивания колонны НКТ (Рисунок 4.8). 

 

Рисунок 4.8 — Типичное оборудование устья скважины для штанговой насосной установки

1 — колонный фланец; 2 — планшайба; 3 — НКТ; 4 — опорная  муфта; 5 — тройник, 6 — корпус  сальника, 7 — полированный шток, 8 — головка сальника, 9 — сальниковая  набивка 

 

Устьевое оборудование типа ОУ включает устьевой сальник, тройник, крестовину, запорные краны и обратные клапаны.

Устьевой сальник герметизирует  выход устьевого штока с помощью  сальниковой головки и обеспечивает отвод продукции через тройник. Тройник ввинчивается в муфту  НКТ. Наличие шарового соединения обеспечивает самоустановку головки сальника при несоосности сальникового штока с осью НКТ, исключает односторонний износ уплотнительной набивки и облегчает смену набивки.

Станок-качалка (Рисунок 4.9) является индивидуальным приводом скважинного насоса.

Основные узлы станка-качалки — рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирноподвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной раме-салазках. 

 

Рисунок 4.9 — Станок-качалка типа СКД

1 — подвеска устьевого штока; 2 — балансир с опорой; 3 — стойка; 4 — шатун; 5 — кривошип; 6 — редуктор; 7 — ведомый шкив; 8 — ремень; 9 — электродвигатель; 10 — ведущий шкив; 11 — ограждение; 12 — поворотная плита; 13 — рама; 14 —противовес; 15 — траверса; 16 — тормоз; 17 — канатная подвеска  

 

Монтируется станок-качалка  на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира  в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17. Она позволяет регулировать посадку плунжера в цилиндр насоса или выход плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки  балансира (длина хода устьевого штока) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие).

За один двойной ход  балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в  аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Выпускают СК с грузоподъемностью  на головке балансира от 2 до 20 т. 

4.3.2 Эксплуатация скважин  погружными электроцентробежными насосами

 

 

На заключительной стадии эксплуатации вместе с нефтью из скважин  поступает большое количество пластовой  воды, применение штанговых насосов  становится малоэффективным. Этих недостатков  лишены установки погружных электронасосов УЭЦН.

Погружные центробежные электронасосы для откачки жидкости из скважины принципиально не отличаются от обычных центробежных насосов, используемых для перекачки жидкостей на поверхности земли. Однако малые радиальные размеры, обусловленные диаметром обсадных колонн, в которые спускаются центробежные насосы, практически неограниченные осевые размеры, необходимость преодоления высоких напоров и работа насоса в погруженном состоянии привели к созданию центробежных насосных агрегатов специфического конструктивного исполнения. Внешне они ничем не отличаются от трубы, но внутренняя полость такой трубы содержит большое число сложных деталей, требующих совершенной технологии изготовления.

Погружные центробежные электронасосы — это многоступенчатые центробежные насосы с числом ступеней в одном блоке до 120, приводимые во вращение погружным электродвигателем специальной конструкции). Электродвигатель питается с поверхности электроэнергией, подводимой по кабелю от повышающего автотрансформатора или трансформатора через станцию управления, в которой сосредоточена вся контрольно-измерительная аппаратура и автоматика. Погружные центробежные электронасосы  опускаются в скважину под расчетный динамический уровень обычно на 150 - 300 м. Жидкость подается по НКТ, к внешней стороне которых прикреплен специальными поясками электрокабель. В насосном агрегате между самим насосом и электродвигателем имеется промежуточное звено, называемое протектором или гидрозащитой. Установка погружного центробежного электронасоса (Рисунок 4.10) включает маслозаполненный электродвигатель ПЭД 1; звено гидрозащиты или протектор 2; приемную сетку насоса для забора жидкости 3; многоступенчатый центробежный насос ПЦЭН 4; НКТ 5; бронированный трехжильный электрокабель 6; пояски для крепления кабеля к НКТ 7; устьевую арматуру 8; барабан для намотки кабеля при спуско-подъемных работах и хранения некоторого запаса кабеля 9; трансформатор или автотрансформатор 10; станцию управления с автоматикой 11 и компенсатор 12.

Насос, протектор и электродвигатель являются отдельными узлами, соединяемыми болтовыми шпильками. Концы валов имеют шлицевые соединения, которые стыкуются при сборке всей установки. При необходимости подъема жидкости с больших глубин секции погружного центробежного электронасоса соединяются друг с другом так, что общее число ступеней достигает 400. Всасываемая насосом жидкость последовательно проходит все ступени и покидает насос с напором, равным внешнему гидравлическому сопротивлению. УЭЦН отличаются малой металлоемкостью, широким диапазоном рабочих характеристик, как по напору, так и по расходу, достаточно высоким к. п. д., возможностью откачки больших количеств жидкости и большим межремонтным периодом. Обеспечивают подачу 10 ÷ 1300 м3/сут и более напором 450 ÷ 2000 м вод.ст. (до 3000 м).

Информация о работе Эксплуатация нефтяных и газовых скважин