Автор работы: Пользователь скрыл имя, 28 Февраля 2015 в 22:28, контрольная работа
В современных условиях инженерная геология изучает геологическую среду для целей строительства и для обеспечения её рационального использования и охраны от неблагоприятных для человека процессов и явлений. Главная цель инженерной геологии – изучение природной геологической обстановки местности до начала строительства, а также прогноз тех изменений, которые произойдут в геологической среде, и в первую очередь в породах, в процессе строительства и эксплуатации сооружений.
Введение 3
1. Химический состав земной коры. Понятие о кларках и их величины для основных химических элементов. Причины изменения химического состава земной коры 4
2. Дизъюнктивные нарушения залегания горных пород 9
3. Геологическая деятельность океанов, морей, озер 19
4. Приток воды в безнапорные совершенные дрены 27
5. Схемы и системы осушения при проектировании котлованов и траншей 32
6. Суффозия и меры по её предотвращению 43
Заключение 49
Библиографический список 50
Рабочая вода поступает в кольцевой зазор между внутренней и натужной колонной труб иглофильтра и далее к входному окну эжектора 12, состоящего из насадки, камеры смещения, горловины и диффузора. Рабочая вода, выходя из насадки с большой скоростью, вследствие внезапного расширения струи создает разрежение и подсасывает из внутренней трубы грунтовую воду, смешиваясь с ней, и подает ее вверх. Как видно из схемы эжекторной установки (см. Рис. 15 а), вода, выбрасываемая из иглофильтров, поступает в лоток и затем сливается в циркуляционный резервуар, откуда часть воды вновь засасывается насосом, а остальная часть сбрасывается за пределы строительной площадки. Эжекторный иглофильтр (см. Рис. 15 б) состоит из надфильтровых труб диаметром 2,5 (ЭИ-2,5) или 4 дюйма (ЭИ-4), фильтрового звена (см. Рис 15 в), из внутренних колонн водоподъемных труб, к нижнему концу которых прикреплен эжекторный водоподъемник. Производительность эжекторных иглофильтров ЭИ-2,5 и ЭИ-4 при напоре рабочей воды 0,6-1 МПа составляет соответственно 0,1-1,8 и 2,9-5,1 л/с. Погружают эжекторные иглофильтры, так же как и легкие, гидравлическим способом. Расстояние между иглофильтрами определяется расчетом, но в среднем оно равно 5-15 м. Выбор оборудования иглофильтровых установок, а также типа и числа насосных агрегатов производят в зависимости от величины ожидаемого притока грунтовых вод Q и требований ограничения длины коллектора, обслуживаемого одним насосом.
Электроосмотическое водопонижение, или электроосушение, основано на использовании в целях усиления эффекта водоотдачи явления электроосмоса, т.е. способности воды двигаться под воздействием поля постоянного тока в порах грунта от анода к катоду. Его используют в слабопроницаемых (глинистых, илистых, суглинистых) грунтах, имеющих коэффициенты фильтрации менее 1 м/сут при ширине котлована до 40 м. при этом вначале по периметру котлована на расстоянии 1,5 м от его бровки и с шагом 0,75-1,5 м погружают иглофильтры-катоды соединенные с отрицательным полюсом источника постоянного тока, а затем с внутренней стороны контура этих иглофильтров на расстоянии 0,8 м от них с таким же шагом, но со смещением, т.е. в шахматном порядке, погружают стальные трубы или стержни-аноды, соединенные с положительным полюсом, причем и иглофильтры, и трубы (стержни) погружают на 3 м ниже необходимого уровня водопонижения. Рабочее напряжение системы, исходя из требований техники электробезопасности, не должно превышать 40-60 В. При пропускании постоянного тока вода, заключенная в порах грунта, передвигается от анода к катоду, благодаря чему коэффициент фильтрации его возрастает в 5-25 раз, а уровень напора в массиве грунта снижается, что в целом значительно повышает эффективность работы иглофильтровой установки.
Котлованы начинают разрабатывать обычно через трое суток после включения системы электроосушения, а в дальнейшем работы в котловане можно вести при работе этой системы. Открытые (соединяющиеся с атмосферой) водопонизительные скважины, оборудованные насосами, применяют в тех случаях, когда требуются большие глубины понижения УГВ, а также когда использование иглофильтров затруднительно из-за больших притоков, необходимости осушения больших площадей и стесненности территории.
Основным конструктивным элементом скважины-колодца является
фильтровая колонна (см. Рис. 15 г), состоящая из фильтра, отстойника, надфильтровых труб, внутри которых размещен насос. Для откачки воды из скважин применяют артезианские турбинные насосы типа АТН, а также глубинные насосы погружного типа (с погружным электродвигателем).
Вакуумный способ водопонижения, при котором в зоне иглофильтра создается устойчивый вакуум, применяют для осушения мелкозернистых грунтов (пылеватых и глинистых песков, супесей, легких суглинков, илов, лессов), имеющих малые коэффициенты фильтрации (0,01-3 м/сут). При необходимости понижения УГВ до 7 м применяют установки вакуумного водопонижения типа УВВ с легкими иглофильтрами, снабженными воздушными трубками, а при глубине понижения до 10-12 м - эжекторными иглофильтрами с обсыпкой. Эжекторные вакуумные водопонизительные установки типа ЭВВУ с вакуумными концентрическими скважинами позволяют достигать понижения уровня грунтовых вод до 20-22 м. В установках УВВ для создания во всасывающем коллекторе устойчивого вакуума применяют водовоздушный эжектор, а для откачки воды - водоводяной эжектор. Они питаются рабочей водой, поступающей от центробежного насоса.
При фильтрации подземная вода совершает разрушительную работу. Из пород вымываются составляющие их мелкие частицы. Это сопровождается оседанием поверхности земли, образованием провалов, воронок (Рис. 16). Этот процесс выноса частиц, а не его последствия, называют суффозией.
Рис. 16 Суффозионный провал в толще суглинков: 1- снег
Различают два вида суффозии – механическую и химическую.
При механической фильтрующаяся вода отрывает от породы и выносит во взвешенном состоянии целые частицы (глинистые, пылеватые, песчаные); при химической вода растворяет частицы пород (гипс, соли, карбонаты) и выносит продукты разрушения.
При одновременном действии этих двух видов суффозии иногда применяют термин – химико-механическая суффозия. Такая суффозия может быть в лессовых породах, где растворяется карбонатное цементирующее вещество и одновременно выносятся глинистые частицы.
Основной причиной суффозионных явлений следует считать возникновение в подземных водах значительных сил гидродинамического давления и превышение величины некоторой критической скорости воды. Это вызывает отрыв и вынос частиц во взвешенном состоянии. Взвешивание частиц происходит при критическом напоре Iкp, который можно определить по формуле:
Iкр = (
где - плотность породы (песка); n – пористость породы.
Гидродинамическое давление D, г/см3, действующее по касательной к депрессионной кривой дренируемого потока, определяют по формуле:
D =
где – плотность воды; n – пористость, доли единицы; I – гидравлический уклон (градиент).
Суффозия наиболее свойственна гранулиметрически неоднородным породам. Процесс механической суффозии в разнозернистом песке происходит следующим образом. Песок состоит из частиц различного размера – больших и малых. Большие частицы создают структурный каркас породы. Поры достаточно велики и через них под действием фильтрующей воды свободно проходит мелкие частицы (глинистые, пылеватые). Суффозия в таких песках возникает с момента появления критического напора Iкр 5.
Суффозия может происходить в глубине массива пород или вблизи поверхности земли.
В глубине массива перенос мелких частиц осуществляется водой из одних пластов в другие или в пределе одного слоя. Это приводит к изменению состава пород и образованию подземных каналов. В глубине массива суффозия может возникать также на контакте двух слоев, различных по составу и пористости. При этом мелкие частицы одной породы потоком воды переносятся в поры другой породы. При суффозии на контакте между слоями иногда формируются своеобразные прослои или вымываются пустоты. Это можно наблюдать на контакте глинистых и песчаных слоев, когда соотношение коэффициентов фильтрации этих пород больше 2. Характерными являются пустоты лессовых пород, в частности, на контакте с подстилающими их кавернозными известняками-ракушечниками. Размер пустот иногда достигает нескольких метров. Такие небольшие пещеры развиты, например, на склонах долины р. Темерник в г. Ростов-на-Дону (Рис. 17). Развитие пещер нередко сопровождается провалом поверхности земли, повреждением зданий и подземных коммуникаций.
Рис. 17. Суффозионная полость (1) в лессовых породах, залегающих на склоне рельефа, сложенном известняками-ракушечниками (2) и глиной (3); 4 – здания.
Следует отметить, что в лессовых породах суффозия развивается не только на контактах, а и в самых толщах, образуя так называемый глиняный, или лессовый, карст.
Развитие пустот начинается с ходов землемеров при условии возникновения в них турбулентных завихрений фильтрующей воды. Порода разрушается и образуются пустоты размыва.
Как механическая, так и химическая суффозия активно проявляется также вблизи поверхности земли при естественном или искусственном изменении гидродинамических условий – формировании воронок депрессии, колебаниях уровня подземных и поверхностных вод, откачках, дренировании. Суффозионные процессы часто возникают на склонах речных долин и откосах котлованов и берегах водохранилищ при быстром спаде паводковых вод или сбросе лишних вод, в местах выхода на поверхность грунтовых вод, на орошаемых территориях (Рис.18).
Рис.18 Схема формирования суффозионной каверны под насыпной плотиной (по М.Васичу)
В откосах строительных выемок суффозионный вынос частиц приводит к оседанию поверхности, образованию провалов, воронок, оползней.
Химическая суффозия может проходить длительное время и выщелачивает не только карбонаты и другие, сравнительно легко растворимые вещества, но и кремнезем. При значительном растворении пород химическая суффозия переходит в карстовый процесс.
При исследовании пород, в которых наблюдается или возможна фильтрация воды, необходимо выявлять их способность к суффозии. Следует учитывать, что при малом гидродинамическом давлении в породах может происходить только фильтрация воды, при повышении давления начинается суффозия. Для выявления этих свойств определяют критические градиенты и давление воды, при которых начинается процесс суффозии. Эту работу проводят в лабораторных и полевых условиях.
При проектировании объектов необходимо установить возможность проявления суффозионной осадки. Определять величину и характер протекания суффозионной осадки (Sс). При этом следует определять всю суммарную величину вертикальной деформации засоленного основания, которая складывается из осадки, вызванной уплотнением грунтов от нагрузки объектов и суффозионной осадки.
При прогнозе величины суффозионной осадки следует учитывать:
Величина суффозионной осадки определяется по результатам полевых испытаний засоленных грунтов статической нагрузки (штампом) после длительного замачивания.
Строительство на суффозионных грунтах имеет свои трудности и осуществляется по своим строительным нормам и правилам. При возведении объектов используются различные приемы строительства:
Выбор того или иного приема строительства зависит от
геологического строения и гидрогеологической обстановки строительной площадки, типа и вида грунтов оснований, характера засоления, конструкции объекта и технических возможностей строительной организации.
Суффозионные явления отрицательно сказываются на устойчивости зданий и сооружений. С суффозией следует активно бороться. Основой всех мероприятий является прекращение фильтрации воды. Это достигается различными путями: регулированием поверхностного стока атмосферных вод и гидроизоляцией поверхности земли; перекрытием места выхода подземных вод тампонированием или присыпкой песка; устройством дренажей для осушения пород или уменьшением скорости фильтрации воды; упрочнением ослабленных суффозией пород методами силикатизации, цементации, глинизации, применением особых видов фундаментов, например, свайных.
Изложенные основы инженерной геологии применяются на практике горно-строительных и горно-эксплуатационных работ.
Развитие геологических процессов и явлений на той или иной территории связано с особенностями ее геологического строения, распространения определенных комплексов горных пород, с историей геологического развития.
Как следует из данных работы, изучение закономерностей развития геологических процессов возможно только на широкой геологической основе, т.е. с учетом развития рельефа того или иного района, его геологического строения, гидрогеологических условий, условий формирования свойств горных пород, развития сопутствующих геологических процессов и явлений.
Всесторонний учет инженерно-геологических факторов таит в себе значительные резервы и возможности улучшения технико-экономических показателей работы.