Автор работы: Пользователь скрыл имя, 28 Февраля 2013 в 23:16, дипломная работа
Данный проект посвящен исследованию горизонтальных скважин Федоровского нефтегазового месторождения. Тема на сегодняшний момент является актуальной. Комплекс по геофизическому исследованию горизонтальных скважин постоянно развивается и совершенствуется.
Впервые в практике российской нефтяной отрасли задачу бурения поставило открытое акционерное общество «Сургутнефтегаз», выбрав основным объектом строительства горизонтальных скважин Федоровское нефтяное месторождение (Горизонт АС-4-5-6).
Введение
Глава 1. Общие сведения о Федоровском месторождении. Краткий физико-географический очерк
Глава 2. История освоения месторождения
Глава 3. Геологическое строение месторождения
3.1 Стратиграфия
3.2 Тектоника
3.3 Нефтегазоносность
3.4 Гидрогеологическая характеристика
Глава 4. Физические свойства горных пород
4.1 Плотностные свойства
4.2 Электрические свойства
4.3 Радиоактивность
4.4 Нейтронные свойства
4.5 Акустические свойства
4.6 Физические свойства нефти и газа
Глава 5. Горизонтальные скважины
5.1 Обзор имеющихся отечественных технологий геофизических исследований бурящихся горизонтальных скважин
5.2 История развития комплекса АМАК “ОБЬ”
5.3 Комплекс методов для геофизических исследований в горизонтальных скважинах
Глава 6. Усовершенствование геофизических методов ГИС для горизонтальных скважин
6.1 Расширение геологических задач
6.2 Состояние и перспективы развития методов акустического каротажа, термометрии и резистивиметрии
6.2.1 Акустический метод
6.2.2 Термометрия и резистивиметрия
6.3 Выбор и обоснование методов ГИС
6.4. Усовершенствованная методика обработки и интерпретации
6.4.1. Первичная обработка
6.4.2 Методика интерпретации данных ГИС
Глава 7.Мероприятия по охране природы, охране труда и технике безопасности
7.1 Техника безопасности при геофизических работах
7.2 Охрана недр и окружающей среды
Глава 8.Технико-экономические показатели проектируемых работ
8.1 Характеристика предприятия
8.2 Организация труда
8.3 Расчет норм времени при работе с комплексом АМАК “ОБЬ” АЛМАЗ-2 и АК-Г
8.4 Сравнительный анализ сметной стоимости работ при производстве ГИС в горизонтальных скважинах по трем технологиям
Заключение
Литература
Современная методология нейтроных методов ориентирована на непосредственное измерение нейтронных характеристик г.п. и на их элементный анализ. При радиометрии скважин основное значение имеют процессы рассеяния и поглощения нейтронов. Рассеяние нейтронов, в основном упругое, обуславливает потерю ими энергии и замедление.
Основными факторами, вызывающими замедление и поглащение нейтронов, являютсяводородо- и хлоросодержание среды.Обращает внимание близость нейтронных характеристик нефти и воды, обусловленная практически одинаковым их водородосодержанием.
Для пород с одинаковым минеральным составом скелета величины Ls (длина замедления быстрых нейтронов) и t (среднее время жизни тепловых нейтронов) уменьшаются с ростом их влажности, с увеличением их пористости.
4.5 Акустические свойства
Осадочные горные породы в большинстве своём являются дифференциально упругими и не обладают достаточно совершенной связью между фазами.
Скорость продольных волн в осадочных породах изменяется от 700 до 6000 м/с. В верхних частях разреза, где породы недостаточно уплотнены или просто рыхлые, наименьшая скорость наблюдается в песчаниках и глинах. Такое же распределение скорости в среднем отмечается и в меловых отложениях, ниже по разрезу значения скорости в среднем в различных породах сближаются.
Основными факторами, влияющими на
скорость распространения упругих
колебаний в глинистых
Нефть оказывает определённое влияние на скорость и поглощение волн при прохождении их через залежь. Хотя величина этого влияния твёрдо не устаноалена, данные полученные на изучении ряда месторождений в условиях естественного залегания нефтегазоносных и водоносных слоёв показали, что скорость распространения в нефтегазоносных отложениях уменьшается по сравнению со скоростью в водоносной части в среднем на 0.5 км/с.
В отдельных случаях уменьшение
скорости распространения в
Большое значение имеют термодинамические условия залегания нефти. С повышением температуры скорость распространения уменьшается, причем наиболее ярко в нефтенасыщенных породах (до 30% и более) по сравнению с газо- и водонасыщением. Увеличение давления (глубины), наоборот, ведет к повышению скорости распространения.
4.6 Физические свойства нефти и газа
Плотность нефти в поверхностных условиях колеблется в пределах 0.73-1.03г/см3(при t=200с). Вязкость нефтей (свойство их подвижности), измеряемая в паскалях на секунду(1Па*с=10П), изменяется в широком диапозоне 0.001-0.15Па*с и с повышением температуры снижается. Для характеристики пластовой нефти определяют газовый фактор(м3/т)-количество растворенного в пластовой нефти газа, выделяемого при t0=150с, давлении ~100 кПа из 1т нефти. Газовый фактор колеблется в широких пределах (от едениц до сотен куб.метров на 1т.) Давление, при котором начинается выделение из пласта растворённого газа, называют давлением насыщения. Как правило, они ниже пластового.
Объёмный коэффициент пластовой нефти-это отношение удельного объёма нефти в пластовых условиях к объёму этой же, но дегазированной на поверхность нефти в нормальных условиях. Значение объемного К в зависемости от газового фактора изменяется от 1.05 до 1.3. При гидродинамических исследованиях и других расчетах объём и дебит нефти пересчитывают на пластовые условия с помощью объемного коэффициента.
Природный газ.
Относительная плотность газа по воздуху 0.56-0.66. Газ нефтенасыщенного пласта содержит до 45% метана, а первых четырех гомологов (метан, этан, пропан, бутан)- в сумме до 99%. При поисково-разведочных работах сравнительно низкое содержание метана в пробах флюида, отобранного из пласта, рассматривается как признак нефтяной залежи.
В процессе геологоразведочных работ сталкиваются с явлением, когда пустоты пород в при скважинной зоне продуктивного пласта содержат многокомпонентный флюид (газ, нефть, воду) в различных сочетаниях и соотношениях , что осложняет однозначное решение поставленных задач.
Характеристика пластов приведена в таблице 4.1
Таблица 4.1. Характеристика коллекторов пластов Федоровского месторождения
Показатели |
Пласты |
||||||||
АС4 |
АС5-6 |
АС7-8 |
АС9 |
БС1 |
БС2 |
БС101 |
БС10 |
||
Год открытия |
1971 г. |
||||||||
Тип залежи |
Пластовые |
сводные |
|||||||
Тип коллектора |
Терригенные |
||||||||
Возраст отложений |
Мел.(вартовская свита) |
Мел.(мегионская свита) |
|||||||
Глубина залегания, м средняя абсолютная отметка кровли пласта |
1775 |
1807 |
1825-1837 |
1842-1853 |
1950-1975 |
1955-1975 |
2160-2170 |
2220 |
|
Площадь нефтеносности ,км 2 |
300,3 |
875,7 |
49,2 |
38,0 |
202,6 |
36,1 |
164,3 |
850,7 |
|
Нефтенасыщенная толщина пласта , м |
4,3 |
5,6 |
6,3 |
4,8 |
3,7 |
4,9 |
3,1 |
10,2 |
|
Нефтегазонасыщенная толщина пласта ,м |
12,0 |
20-22 |
18-20 |
16,0 |
6,0 |
16,0 |
12,0 |
40,0 |
|
Пористость |
25,6 |
26,0 |
24,0 |
26,0 |
26,0 |
27,0 |
24,0 |
24,0 |
|
Проницаемость ,мкм2 |
0,507 |
0,532 |
0,162 |
0,309 |
0,248 |
0,363 |
0,219 |
0,265 |
|
Коэффициент нефтенасыщенности |
0,290 |
0,630 |
0,540 |
0,670 |
0,640 |
0,660 |
0,670 |
0,680 |
|
Коэффициент песчанистости |
0,295-0,507 |
0,524-0,655 |
0,535-0,567 |
0,466-0,488 |
0,454- 0,600 |
0,545-0,653 |
0,336-0,608 |
0,403-0,563 |
|
Коэффициент расчлененности |
1,6-2,14 |
5,7-9,5 |
5,6 |
4,1-4,6 |
1,6-2,7 |
3,98-4,3 |
2,0-2,4 |
5,0-9,7 |
|
Удельная продуктивность ,10 м3 / м сут Мпа |
0,320 |
0,380 |
0,200 |
0,490 |
0,280 |
0,280 |
0,320 |
0,850 |
|
Пластовое давление ,Мпа |
18,800 |
18,800 |
18,800 |
19,000 |
20,500 |
20,500 |
22,900 |
23,100 |
|
Пластовая температура,oC |
56 |
58 |
58 |
58 |
59 |
62 |
67 |
68 |
|
Глава 5. Горизонтальные скважины
Горизонтальными скважинами называют скважины с большим зенитным углом (обычно больше 85 градусов),пробуренные с целью увеличения нефтегазоотдачи продуктивного пласта проходки в залежи горизонтального участка ствола большой протяженности. В этом состоит их отличие от скважин с большими отходами забоя от устья, которые представляют собой наклонно-направленные скважины с большим зенитным углом, пробуренные с целью пересечения продуктивного пласта в заданной точке.
Хотя нефть и газ добывались
с помощью наклонных и/или
В период между 1978 и 1985 годами горизонтальное
бурение применялось редко. Первые
скважины были экспериментальными, дорогими
и часто проводились с
5.1 Обзор имеющихся отечественных
технологий геофизических
В настоящее время в
Проведение ГИС автономной аппаратурой, спускаемой на буровом инструменте («АМК Горизонт»-разработка ВНИИГИС, г. Октябрьский). Автономный скважинный прибор наворачивается на буровой инструмент и с его помощью доставляется в горизонтальный участок ствола скважины. По истечении заданного времени включается измерительная схема скважинного прибора.
Проведение ГИС комплексом стандартных приборов, помещаемых в электрорадиопрозрачный стеклопластиковый контейнер, спускаемый на буровом инструменте.
Данная технология («Горизонталь-1»
- «Горизонталь-5» - разработка АО НПФ
«Геофизика» г. Уфа) предусматривает
использование каротажного
3.Проведение ГИС с
Недостатки первой технологии:
-ограниченный и не
-Сложности при эксплуатации автономного прибора: большие габаритные размеры (длина=8м., диаметр=180мм.), большой вес (450кг.), необходимость технических средств для погрузки, перевозки, разгрузки и т.д.
-Ограниченные возможности при
исследовании скважин с малым
радиусом искривления и
-Ограниченное время
-При проведении спуска
Недостатки второй технологии:
-невозможность реализации необходимого комплекса исследований из-за наличия стеклопластикового контейнера
-высокая аварийность работ,
связанная с обрывами
-За один спуско-подьем
-Большие затраты времени на производство исследований - в среднем 25 часов на одну операцию, без учета аварийных ситуаций.
Недостатки третьей технологии:
-существующие каротажные
-максимальная достигнутая
Перечисленные недостатки вышеназванных технологий являются непреодолимыми в ближайшей перспективе.
5.2 История развития комплекса АМАК “ОБЬ”
Предложения по реализации аппаратурно-методического
автономного комплекса для
Были проанализированы: состояние геофизических исследований ГС, а также преимущества и недостатки уже существующих технологий:
Для устранения недостатков и усиления
преимуществ существующих технологий
был предложен аппаратурно-
АМАК “ОБЬ” представляет собой сборку стандартных скважинных приборов, реализующих необходимый комплекс ГИС, работающих в автономном режиме. Реализация автономного режима достигается размещением в них источников питания (аккумуляторов), блоков твердотельной интегральной памяти, преобразователя питания, а также датчиков давления и температуры в составе блоков управления работой автономных приборов.
Особенностями програмно-методических средств и технологии интегрированной обработки всего комплекса измерений являются:
-выдача всей информации в функции глубины скважины в единых форматах записи;
-наличие программного
обеспечения, позволяющего
Такова суть предлагаемой технологии АМАК “ОБЬ”, и представлены сравнительные характеристики АМАК “ОБЬ” с АМК “Горизонт” и ”Горизонталь-1” С учетом вышеизложенных предложений было сформулировано техническое задание на разработку АМАК “ОБЬ” и 11.12.96. заключен договор на поставку между ОАО ”Сургутнефтегаз” и разработчиками: ЗАО “Геоэлектроника сервис”, АО НПЦ “Тверьгеофизика”, ТОО “Луч”.
C 1997 г. в тресте СНГФ начались
испытания АМАК “ОБЬ” в
Связка скважинных приборов частично или полностью не выходила из бурового инструмента;
Отказ скважинных приборов и блоков памяти;
Расхождения по глубине между кривыми зарегистрированными АМАК “ОБЬ” и кабельным вариантом, что происходит из-за несовершенной технологии определения глубин (использование меры труб по буровому журналу и датчика глубин с талевого троса);
Расхождение данных инклинометрии
АМАК “ОБЬ” с данными ИОНа и
данными телесистемы “Sperry-
Регистрируемая системой кривая ПС не пригодна для литологического расчленения разреза.
Некоторые проблемы были решены, например:
Проблема отказов скважинных приборов и блоков памяти решалась заменой и доработкой электроники модулей.