Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 16:51, дипломная работа
Наиболее эффективным является переход от бурения одиночных ГС к бурению и широкомасштабному промышленному освоению систем на основе бурения сотен ГС в комбинации с вертикальными и наклонно-направленными скважинами на одном объекте.
При увеличении объемов бурения горизонтальных скважин встает вопрос о выборе более эффективной технологии добычи нефти. С 2003 года в ОАО «Сургутнефтегаз» начато бурение горизонтальных скважин с хвостовиком. Бурение скважины производится инструментом меньшего диаметра и на биополимерном солевом растворе, который само разрушается через две недели, при этом отсутствует загрязненность коллекторов, как при глинистом растворе.
Введение
Глава 1. Общие сведения о Федоровском месторождении. Краткий физико-географический очерк
Глава 2. История освоения месторождения
Глава 3. Геологическое строение месторождения
3.1 Стратиграфия
3.2 Тектоника
3.3 Нефтегазоносность
3.4 Гидрогеологическая характеристика
Глава 4. Физические свойства горных пород
4.1 Плотностные свойства
4.2 Электрические свойства
4.3 Радиоактивность
4.4 Нейтронные свойства
4.5 Акустические свойства
4.6 Физические свойства нефти и газа
Глава 5. Горизонтальные скважины
5.1 Обзор имеющихся отечественных технологий геофизических исследований бурящихся горизонтальных скважин
5.2 История развития комплекса АМАК “ОБЬ”
5.3 Комплекс методов для геофизических исследований в горизонтальных скважинах
Глава 6. Усовершенствование геофизических методов ГИС для горизонтальных скважин
6.1 Расширение геологических задач
6.2 Состояние и перспективы развития методов акустического каротажа, термометрии и резистивиметрии
6.2.1 Акустический метод
6.2.2 Термометрия и резистивиметрия
6.3 Выбор и обоснование методов ГИС
6.4. Усовершенствованная методика обработки и интерпретации
6.4.1. Первичная обработка
6.4.2 Методика интерпретации данных ГИС
Глава 7.Мероприятия по охране природы, охране труда и технике безопасности
7.1 Техника безопасности при геофизических работах
7.2 Охрана недр и окружающей среды
Глава 8.Технико-экономические показатели проектируемых работ
8.1 Характеристика предприятия
8.2 Организация труда
8.3 Расчет норм времени при работе с комплексом АМАК “ОБЬ” АЛМАЗ-2 и АК-Г
8.4 Сравнительный анализ сметной стоимости работ при производстве ГИС в горизонтальных скважинах по трем технологиям
Заключение
Литература
Естественная радиоактивность горных пород обусловлена присутствием в них радиоактивных элементов. Максимальной радиоактивностью характеризуются глины 20-25 мкр/час, радиоактивность песчаников и алевролитов возрастает с увеличением глинистости 2-20 мкр/час.
Таблица . Физические свойства различных пород.
Горная порода |
Плотность г/см3 |
Пористость % |
Рп Омм |
Iу мкр/час |
Глина |
2.4 |
20 |
1-10 |
20-25 |
Аргиллит |
2.4 |
16-20 |
5-12 |
12-14 |
Алевролит |
2.3 |
20 |
5-20 |
10-20 |
Песок |
2.1 |
30 |
5-20 |
2-10 |
Песчаник водоносный |
1-1.02 |
8.3-20.2 |
1.5-6.4 |
2-10 |
Песчаник нефтеносный |
1-2.2 |
8.3-20.2 |
6.0-60 |
2-10 |
Аргиллит битуминозный |
2.45 |
16 |
50-60 |
30-70 |
4.1 Плотностные свойства
Плотность для залежей нефти определяется в основном плотностью пород-коллекторов, которая в свою очередь зависит от их пористости и в меньшей степени от минерального состава.
Нефть способствует уменьшению плотности в объеме залежи по отношению к водоносной части коллектора. В соответствии с этим величина sэф является отрицательной.
Значение sэф определяется двумя факторами: различием плотностей нефти sн и законтурной воды sв заполняющей поры, а также степенью эпигенетических преобразований коллектора. Считается, что для нефтяных месторождений sэф часто находится в пределах 0.05-0.10 г/см3.
С глубиной изменение плотности и пористости довольно неравномерно; наибольшие изменения характерны для глубин 0-3км. Среди терригенных осадочных пород песчаники всегда характеризуются несколько меньшей плотностью по сравнению с глинистыми породами.
Это прослеживается как для молодых отложений, так и для более древних.
4.2 Электрические свойства
Удельное электрическое сопротивление и поляризуемость.
Электрическое сопротивление залежей нефти нефтеносных пластов может превосходить r водоносных пластов в 100 раз и более.
Влияние термодинамических условий залегания проявляется главным образом через изменение электрических свойств насыщающего флюида. В общем случае увеличения всестороннего давления ведет к возрастанию сопротивления, а увеличение температуры- к уменьшению его, т.к. повышается проводимость флюида. В целом электрическое сопротивление почти всех видов пород с глубиной уменьшается, поскольку влияние температуры превалирует над давлением.
Для оценки общего эффекта залежи продуктивная толща рассматривается как единый электрический горизонт. При таком подходе различие в сопротивлениях нефтегазоносных и водоносных участков составляет в среднем до 2-3 раз, иногда до5. При малой мощности залежи (20-50) различие составляет не более 30-50%.
Месторождение нефти и газа характеризуется повышенной поляризуемостью пород как в области залежи так и выше нее. Поляризуемость пород h в контуре залежи может увеличиваться по сравнению с законтурной частью до 5-7раз.
4.3 Радиоактивность
Радиоактивностью называется способность неустойчевых атомных ядер самопроизвольно превращаться в более устойчивые ядра других элементов, испуская, альфа-бета-гамма-лучи и элементарные частицы (электроны, нейтроны, протоны, позитроны и нуклоны).
Радиоактивность атомных ядер, находящихся в естественных условиях, получила название естественной радиоактвности, а радиоактивный распад атомных ядер при их бомбардировки элементарными частицами-искусственной радиоактивности.
Естественная радиоактивность горных пород в основном обусловлена присутствием в них естественных радиоактивных элементов урана U и продукта его распада радия Ra, тория Th и радиоактивного изотопа калия K.
Из осадочных пород, типичных для нефтяных и газовых месторождений, наиболее радиоактивны чистые глины, высокая интенсивность гамма-излучения которых фиксируется на диаграммах ГК. Менее радиоактивны песчаные и известковые глины, за ними идут глинистые пески, песчаники, чистые пески и карбонатные породы.
Интенсивность искусственного гамма-излучения, рассеянного породообразующими элементами в процессе их облучения потоком гамма-квантов измеряют методами рассеянного гамма-излучения. В методах рассеянного гамма-излучения в основном имеют место фотоэлектрическое поглощение и комптоновское рассеяние гамма-квантов породой.
Фотоэффект.
Гамма-квант при прохождении через вещество может вступить во взаимодействие с электронами атомов этого вещества. Гамма-квант передает всю свою энергию и полностью поглощается, а электрон выбрасывается за пределы атома. При фотоэффекте гамма-квант может выбить связанные электроны, энергия связи которых меньше энергии самого гамма-кванта. Такой процесс вырывания электрона из атома фотоном называется фотоэффектом, а вырываемые электроны-фотоэлектронами.
Комптоновский эффект.
Комптоновское взаимодействие (поглощение и рассеяние) характерно для гамма-квантов всех энергий, свойственных гамма-излучению естественных радиоактивных элементов, и для большей части природных поглотителей является основным механизмом взаимодействия гамма-квантов с веществом.
Комптоновское взаимодействие происходит на электронах при энергиях гамма-квантов, значительно превышающих энергию связи электронов на электронных орбитах. При этом гамма-квант вступает во взаимодействие со свободным или слабосвязанным электроном и в результате неупругого соударения с электроном передает последнему часть своей энергии и импульса, а сам изменяет свое направление, приобретает энергию и отклоняется под углом к первоначальному направлению. С увеличением энергии гамма-квантов угол их отклонения от первоначального направления при комптоновском взаимодействии закономерно уменьшается.
Для исследования интенсивности тепловых нейтронов по разрезу скважины на заданном расстоянии от источника быстрых нейтронов, которые в результате замедления породообразующими элементами превратились в тепловые - используют метод плотности тепловых нейтронов.
Регистрирующая интенсивность тепловых нейтронов зависит от замедляющей и поглощающей способности горной породы, т.е. от водородосодержания и наличия элементов с высоким сечение захвата тепловых нейтронов.
4.4 Нейтронные свойства
Пористость,
глинистость, нефте-, водо-, газонасыщенность,
химический состав твердой фазы пород,
давление и температура влияют на показания
нейтронных методов через соответствующие
нейтронные характеристики. Характеристиками
пространственно-
Современная методология нейтроных методов ориентирована на непосредственное измерение нейтронных характеристик г.п. и на их элементный анализ. При радиометрии скважин основное значение имеют процессы рассеяния и поглощения нейтронов. Рассеяние нейтронов, в основном упругое, обуславливает потерю ими энергии и замедление.
Основными факторами, вызывающими замедление и поглащение нейтронов, являютсяводородо- и хлоросодержание среды.Обращает внимание близость нейтронных характеристик нефти и воды, обусловленная практически одинаковым их водородосодержанием.
Для пород с одинаковым минеральным составом скелета величины Ls (длина замедления быстрых нейтронов) и t (среднее время жизни тепловых нейтронов) уменьшаются с ростом их влажности, с увеличением их пористости.
4.5 Акустические свойства
Осадочные горные породы в большинстве своём являются дифференциально упругими и не обладают достаточно совершенной связью между фазами.
Скорость продольных волн в осадочных породах изменяется от 700 до 6000 м/с. В верхних частях разреза, где породы недостаточно уплотнены или просто рыхлые, наименьшая скорость наблюдается в песчаниках и глинах. Такое же распределение скорости в среднем отмечается и в меловых отложениях, ниже по разрезу значения скорости в среднем в различных породах сближаются.
Основными факторами, влияющими на скорость распространения упругих колебаний в глинистых песчаниках , являются: литолого-минералогический состав, поровое пространство, заполненное жидкостью, степень насыщения пор жидкостью или газом, степень цементации, текстурные и структурные особенности, разность горного и пластового давлений (эффективное давление). Скорость распространения упругих волн в нефти и газе меньше, чем в воде. Это объясняется большей сжимаемостью углеводородов, чем воды. Так скорость распространения волн в песке, полностью насыщенном нефтью, на 15-20% меньше, чем в песке, заполненном водой.
Нефть оказывает определённое влияние на скорость и поглощение волн при прохождении их через залежь. Хотя величина этого влияния твёрдо не устаноалена, данные полученные на изучении ряда месторождений в условиях естественного залегания нефтегазоносных и водоносных слоёв показали, что скорость распространения в нефтегазоносных отложениях уменьшается по сравнению со скоростью в водоносной части в среднем на 0.5 км/с.
В отдельных случаях уменьшение скорости распространения в нефтегазоносных отложениях может достигать 1км/с и более, или 30-35%.
Большое значение имеют термодинамические условия залегания нефти. С повышением температуры скорость распространения уменьшается, причем наиболее ярко в нефтенасыщенных породах (до 30% и более) по сравнению с газо- и водонасыщением. Увеличение давления (глубины), наоборот, ведет к повышению скорости распространения.
4.6 Физические свойства нефти и газа
Плотность нефти в поверхностных условиях колеблется в пределах 0.73-1.03г/см3(при t=200с). Вязкость нефтей (свойство их подвижности), измеряемая в паскалях на секунду(1Па*с=10П), изменяется в широком диапозоне 0.001-0.15Па*с и с повышением температуры снижается. Для характеристики пластовой нефти определяют газовый фактор(м3/т)-количество растворенного в пластовой нефти газа, выделяемого при t0=150с, давлении ~100 кПа из 1т нефти. Газовый фактор колеблется в широких пределах (от едениц до сотен куб.метров на 1т.) Давление, при котором начинается выделение из пласта растворённого газа, называют давлением насыщения. Как правило, они ниже пластового.
Объёмный коэффициент пластовой нефти-это отношение удельного объёма нефти в пластовых условиях к объёму этой же, но дегазированной на поверхность нефти в нормальных условиях. Значение объемного К в зависемости от газового фактора изменяется от 1.05 до 1.3. При гидродинамических исследованиях и других расчетах объём и дебит нефти пересчитывают на пластовые условия с помощью объемного коэффициента.
Природный газ.
Относительная плотность газа по воздуху 0.56-0.66. Газ нефтенасыщенного пласта содержит до 45% метана, а первых четырех гомологов (метан, этан, пропан, бутан)- в сумме до 99%. При поисково-разведочных работах сравнительно низкое содержание метана в пробах флюида, отобранного из пласта, рассматривается как признак нефтяной залежи.
В процессе геологоразведочных работ сталкиваются с явлением, когда пустоты пород в при скважинной зоне продуктивного пласта содержат многокомпонентный флюид (газ, нефть, воду) в различных сочетаниях и соотношениях , что осложняет однозначное решение поставленных задач.
Характеристика пластов приведена в таблице 4.1
Таблица 4.1. Характеристика коллекторов пластов Федоровского месторождения
Показатели |
Пласты | |||||||
АС4 |
АС5-6 |
АС7-8 |
АС9 |
БС1 |
БС2 |
БС101 |
БС10 | |
Год открытия |
|
|
|
1971 г. |
|
|
|
|
Тип залежи |
|
Пластовые |
сводные |
|
|
|
| |
Тип коллектора |
|
Терригенные |
|
|
|
| ||
Возраст отложений |
Мел.(вартовская свита) |
Мел.(мегионская свита) | ||||||
Глубина залегания, м средняя абсолютная отметка кровли пласта |
1775 |
1807 |
1825-1837 |
1842-1853 |
1950-1975 |
1955-1975 |
2160-2170 |
2220 |
Площадь нефтеносности ,км 2 |
300,3 |
875,7 |
49,2 |
38,0 |
202,6 |
36,1 |
164,3 |
850,7 |
Нефтенасыщенная толщина пласта , м |
4,3 |
5,6 |
6,3 |
4,8 |
3,7 |
4,9 |
3,1 |
10,2 |
Нефтегазонасыщенная толщина пласта ,м |
12,0 |
20-22 |
18-20 |
16,0 |
6,0 |
16,0 |
12,0 |
40,0 |
Пористость |
25,6 |
26,0 |
24,0 |
26,0 |
26,0 |
27,0 |
24,0 |
24,0 |
Проницаемость ,мкм2 |
0,507 |
0,532 |
0,162 |
0,309 |
0,248 |
0,363 |
0,219 |
0,265 |
Коэффициент нефтенасыщенности |
0,290 |
0,630 |
0,540 |
0,670 |
0,640 |
0,660 |
0,670 |
0,680 |
Коэффициент песчанистости |
0,295-0,507 |
0,524-0,655 |
0,535-0,567 |
0,466-0,488 |
0,454- 0,600 |
0,545-0,653 |
0,336-0,608 |
0,403-0,563 |
Коэффициент расчлененности |
1,6-2,14 |
5,7-9,5 |
5,6 |
4,1-4,6 |
1,6-2,7 |
3,98-4,3 |
2,0-2,4 |
5,0-9,7 |
Удельная продуктивность ,10 м3 / м сут Мпа |
0,320 |
0,380 |
0,200 |
0,490 |
0,280 |
0,280 |
0,320 |
0,850 |
Пластовое давление ,Мпа |
18,800 |
18,800 |
18,800 |
19,000 |
20,500 |
20,500 |
22,900 |
23,100 |
Пластовая температура,oC |
56 |
58 |
58 |
58 |
59 |
62 |
67 |
68 |