Выветривание пород

Автор работы: Пользователь скрыл имя, 23 Мая 2013 в 21:41, курсовая работа

Краткое описание

В результате техногенного (антропогенного) воздействия в природе возникают или активизируются различные изменения, влияющие на здоровье и благосостояние людей. В связи с этим важнейшей проблемой человечества является процесс выветривания пород.
Цель – детально изучить причины выветривания пород, определить типы кор выветривания.

Содержание

Введение
Глава 1. Физическое выветривание и его факторы
Глава 2. Химическое выветривание и его факторы
Глава 3.Коры выветривания
Заключение
Список литературы

Прикрепленные файлы: 1 файл

Выветривание пород и типы кор выветривания.docx

— 173.88 Кб (Скачать документ)

Рассмотренные примеры показывают, что общий процесс формирования кор выветривания весьма сложен, зависит от сочетания многих факторов и представляет собой несколько взаимосвязанных явлений: 1) разрушение и химическое разложение горных пород с образованием продуктов выветривания; 2) частичный вынос и перераспределение продуктов выветривания; 3) синтез новых минералов в результате взаимодействия продуктов выветривания в ходе их миграции; 4) метасоматическое (греч. "мета" - после, "сома" - тело) замещение минералов материнских пород. В направленности общего процесса выветривания большая роль принадлежит миграционной способности химических элементов.

Трансформация горной породы в кору выветривания происходит под  действием зональных биоклиматических и азональных геолого-тектонических  факторов. Зональные факторы через  основные процессы выветривания обусловливают характер и интенсивность воздействия непосредственных агентов преобразования горной породы в ее элювий. Они направляют процесс возникновения современных кор выветривания определенного типа.

Уже в процессе выветривания горные породы приобретают ряд свойств, существенных для формирующихся  из них почв. В процессе почвообразования эти свойства получают дальнейшее развитие. Рухляк выветривания (элювий горной породы) служит благоприятным субстратом для поселения низших и высших растений и связанной с ними фауны и, соответственно, для интенсивного развития почвообразования.

В процессе почвообразования каждая почва проходит ряд последовательных стадий, направление, длительность и интенсивность которых определяются конкретным комплексом факторов почвообразования и их эволюцией в каждой точке земной поверхности.

Стадия начального почвообразования носит название первичного почвообразования, обычно длительна по времени и охватывает почвообразованием небольшую по мощности зону субстрата. При этом процесс роста плодородия замедлен, а профиль в слабой степени дифференцирован на генетические горизонты. [10]

Стадия развития почвы протекает с нарастающей интенсивностью, охватывая все большую толщу почвообразующей породы вплоть до формирования зрелой почвы с характерным для нее профилем и комплексом свойств. К концу этой стадии процесс постепенно замедляется, вернее, приходит к некоторому равновесному состоянию, определяемому комплексом и стабильностью во времени факторов почвообразования. Наступает стадия равновесия — климаксное состояние), длящееся неопределенно долго. В этом состоянии поддерживается более или менее постоянное динамическое равновесие со средой, т.е. с существующим комплексом факторов почвообразования.

На каком-то этапе в  результате саморазвития экосистемы климаксная стадия сменяется эволюцией почвы. Почва входит в экосистему либо в качестве одного из компонентов, либо в результате изменения одного или нескольких факторов почвообразования — климата, растительности, характера грунтового увлажнения (изменение рельефа, распашка, орошение или осушение) и т. д. Стадию эволюции почвы можно сопоставить со стадией развития, которая ведет к какому-то новому климаксному состоянию. При этом образуется новая почва с новым профилем и новым комплексом свойств, например формирование луговых почв из болотных при обсыхании территории или, наоборот, при затоплении каштановых и черноземов при остепнении; переход солончака в солонец при рассолении; оподзоливание буроземов; заболачивание автоморфных почв и т. д. В данном случае новая почва образуется не из почвообразующей породы, а из ранее сформированной почвы.

Таких циклов почвообразования на одном и том же субстрате  может быть несколько. В профиле  полигенетических (полициклических) почв обычно обнаруживаются унаследованные реликтовые черты и признаки, не связанные с современным этапом почвообразования.

Эволюция почвы может  идти в разных направлениях: по пути нарастания мощности почвы и/или по пути ее уменьшения, по пути засоления почвы или ее рассоления, деградации почвенного плодородия или его нарастания. Пути эволюции определяются конкретными природными ситуациями. Каждый очередной этап эволюции — это новая почва или ее новое устойчивое состояние, которые, в свою очередь, сменяются новыми эволюционными циклами.

Абсолютная аккумуляция  веществ — с одной стороны, это поступление веществ в почвообразующую породу из атмосферы или гидросферы при почвообразовании, а с другой — накопление их в формирующейся почве. Таким путем в почве концентрируются углерод (фотосинтез — создание биомассы — отмирание биомассы — разложение — гумификация — гумусонакопление); азот (азотфиксация — потребление организмами — отмирание биомассы — нитрификация, аммонификация); водорастворимые соли, гипс, известь, соединения железа, кремнезем (из грунтовых вод, особенно при выпотном режиме).

Относительная аккумуляция  веществ при почвообразовании — это остаточное накопление в результате выноса каких-то других веществ. Примером может служить процесс выноса щелочных и щелочноземельных металлов и относительное увеличение при этом кремнезема и полуторных окислов железа и алюминия. Относительная аккумуляция веществ — всегда следствие элювиального процесса. Под элювиальным процессом понимается нисходящее передвижение веществ в почве при промывном режиме и частичный или полный вынос в нижележащую толщу или за ее пределы ряда соединений.

Вынос и аккумуляция веществ при почвообразовании — следствие взаимодействия малого биологического и большого геологического круговоротов веществ на земной поверхности, которое в разных природных условиях развивается противоречиво и неоднозначно.

Большой геологический круговорот (БГК). Определяется различными циклами (геохимическими, биогеохимическими, технобио-геохимическими, миграционно-трансформационными) в глобальной циркуляции веществ в истории развития Земли. Эти глобальные циклы складываются из комплекса элементарных циклов и включают следующие: 

    • появление изверженных пород на земной поверхности;
    • выветривание, почвообразование, эрозия и денудация;
    • накопление континентальных и океанических осадков, метаморфизм осадков;
    • выход на поверхность осадочных пород с новым циклом выветривания, почвообразования;
    • денудация и осадконакопление либо опускание веществ в геосинклинальных областях в мантию и переплавка, после чего опять выход на поверхность в новом цикле вулканизма.

 
        Малый биологический круговорот (МБК). В большом геологическом круговороте важную роль играет МБК. Попадая в малый биологический круговорот, элементы на продолжительный срок выключаются из глобального геохимического потока, многократно участвуя в бесконечных преобразованиях вещества земной поверхности. Например, суть малого биологического круговорота зольных элементов сводится к потреблению растениями элементов из почвы, их участию в биохимических процессах и возвращению в почву после отмирания растений. Более сложны циклы углерода и азота, затрагивающие и атмосферу. 

Изучение строения кор выветривания имеет большое теоретическое значение. Оно позволяет восстанавливать палеогеографическую обстановку времени их формирования. С корами выветривания различного возраста связано много разнообразных и ценных полезных ископаемых - бокситов, железных руд, марганца, руд никеля, кобальта и др. При этом в отдельных случаях в древних корах выветривания металлы накапливаются в значительно большем количестве, чем в исходной породе, и приобретают промышленное значение. Так образовались месторождения никеля, кобальта и других металлов в древней коре выветривания ультраосновных пород Урала. Сюда следует также отнести различные виды глинистых образований кор выветривания, многие из которых являются керамическим и огнеупорным сырьем, обладают отбеливающими и другими свойствами. При этом большое значение имеет изучение и глин, возникших за счет переноса и переотложения глинистых образований автоморфных кор выветривания.

В элювиальных образованиях нередко заключены некоторые  россыпные месторождения, такие, как золото, платина, алмазы, касситерит и др., находящиеся в исходных (материнских) породах в рассеянном состоянии. Во время формирования коры выветривания они как химически и механически стойкие вещества высвобождались и обогащали элювиальные образования.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Проведенные исследования позволяют  сделать следующие выводы:

 

Цель и задачи, поставленные в курсовой работе, выполнены.

    1. Физическое выветривание – это дробление материнских пород, их дезинтеграция без существенного изменения состава минеральных зерен. Такое выветривание характерно для Арктики, Антарктики, горных районов, областей аридных зон – пустынь, полупустынь со скудным содержанием влаги в почве, весьма малым годовым количеством осадков при сильном солнечном нагреве, со значительным колебанием суточных и сезонных температур.

Физическое выветривание происходит, в основном, под действием изменения температуры, замерзания-оттаивания воды, действия сверлящих (роющих) животных, животных, корневой системы растений, кристаллизации содержащихся в капиллярной воде солей. Существенных изменений состава обломков при этом не происходит.

Частными случаями температурного выветривания являются процессы десквамации (шелушения), сфероидального выветривания и дезинтеграции зерен.

    1. При химическом выветривании разрушение горных пород происходит с изменением их химического состава главным образом под воздействием кислорода, углекислого газа и воды, а также активных органических веществ содержащихся в атмосфере и гидросфере.

Возможность химического  выветривания определяется рядом свойств  самих горных пород, влияющих на их подверженность химическому изменению.

Главными реакциями, обуславливающими химическое выветривание, являются окисление, гидратация, растворение и гидролиз. Но в природе эти процессы протекают совместно, и их суммарный результат сильно изменяет результаты воздействия каждого из них.

    1. Среди кор выветривания выделено два основных морфогенетических типа: площадной и линейный. Площадные коры выветривания развиваются в виде покрова или плаща, занимают обширные площади до десятков и сотен квадратных километров на сравнительно выровненных поверхностях рельефа. Линейные коры выветривания имеют линейные (вытянутые) очертания в плане и приурочены к зонам повышенной трещиноватости, к разломам и контактам различных по составу пород. В этих условиях происходит более свободное проникновение воды и содержащихся в них активных компонентов, что вызывает интенсивный процесс химического выветривания.
    2.  Процесс формирования кор выветривания представляет собой несколько последовательных и взаимосвязанных явлений:
        • Разрушение и химическое разложение горных пород с образованием продуктов выветривания;
        • Частичный вынос и перераспределение продуктов выветривания;
        • Синтез новых минералов в результате взаимодействия продуктов выветривания в ходе их миграции;
        • Метасоматическое замещение минералов материнских пород.

С корами выветривания различного возраста связано много ценных месторождений полезных ископаемых – бокситов, железных руд, марганца, никеля, кобальта и др.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы

 

    1. Алистон А., Пальмер Д. Геология. – М.: Мир, 1989. – 427 с.
    2. Аплонов, C.B. Геодинамика Текст. СПб : Санкт-Петербургский государственный университет, 1993. - 305 с.
    3. Арчиков, Е.И. Общая геоморфология/Е.И. Арчиков. – Чебоксары: Изд-во Чуваш.ун-та, 2002. – 116 с.
    4. Вернадский В.И. История минералов земной коры. Пг.: Науч. хим.-тех. изд-во, 1923. Т. 1. Вып. 1.208 с.
    5. Геология в школе и ВУЗе (Материалы II Международной Конференции) 26-28 июня 2001 года. Отв. ред. Соломин В.П. – С.-П.: МК ГШВ, 2001. – 396 с.
    6. Геология СССР. Том 4. Гл. редактор Сидоренко А.В. – М.: Недра, 1971. – 742 с.
    7. Годовиков А.А. Минералогия. М.: Недра, 1975. 519 с.
    8. Дикенштейн Г.Х. Палеозойские отложения Русской платформы. – М.: Гостоптехиздат, 1957. – 154 с.
    9. Добровольский В.В. Геология: Учеб. для студ. высш. учеб. заведений. – М.: Гуманит. изд. центр ВЛАДОС, 2001. – 320 с.
    10. Карстовые процессы Европейской части СССР. – М.: Наука, 1974. – 352 с.
    11. Костенко Н.П. Геоморфология: Учеб. для студ. высш. учеб. заведений. 2-е изд. – М.: изд-во МГУ, 1999. – 286 с.
    12. Короновский Н.В,, Хаин В.Е., Ясаманов Н.А. Историческая геология. – М.: Изд-во МГУ, 1997. – 320 с.
    13. Короновский, Н.В. Геология/Н.В. Короновский – М.:Дрофа, 2006. – 223 с
    14. Лапердин, В.К., Экзогенные геологические процессы и сели Восточного Саяна Текст. / Лапердин, В.К., Тржцинский, Ю.Б. Новосибирск : Наука, 1977.-102 с.
    15. Лисицина Г.Н. Вопросы палеогеографии позднеледникового времени на территории Северо-запада Европейской части СССР и Сибири. – М.: Изд-во Московского университета, 1969. – 244 с.
    16. Материалы по научным исследованиям естественно-географического факультета ШГПУ: Сборник научных статей. – Шуя: Издательство «Весть» ШГПУ, 2003. – 112 с.
    17. Неклюкова Н. П. Общее землеведение. Литосфера. Биосфера, Географическая оболочка. Учеб. пособие для студентов геогр. специальностей пед. ин-тов. Изд-е 2-е, доп. – М.: «Просвещение», 1975. – 224 с. С ил., карт.
    18. Неклюкова Н. П, Общее землеведение. Земля как планета. Атмосфера. Гидросфера. Учеб. пособие для студентов геогр. спец-тей пед. ин-тов. Изд. 2-е, доп. и перераб. – М.: «Просвещение», 1976. – 336 с. с ил.
    19. Никонова М.А., Данилов П.А. Землеведение и краеведение: Учеб. пособие для студ. высш. педагогических заведений. – М.: Академия, 2000. – 188 с.
    20. Петров М.П., Кашкаров Д.Н. Жизнь пустыни. Введение в экологию и освоение пустынь. М. Л., Биомедгиз, 1936.
    21. Ратушняк, Г.С. Инженерные изыскания и специальные гидроклиматические исследования Текст. М.: Недра, 1991. - 114 с.
    22. Суходонов А.К. Геоморфологическая география: Учебное пособие. – М.: Недра, 1985. – 112 с.
    23. Толстых, Е.А., Методика измерения количественных параметров экзогенных геологических процессов Текст. / Толстых, Е.А., Юпокин, A.A. -М.: Недра, 1984. -117 с.
    24. Федорович Б.А. Динамика и закономерности рельефообразования

Информация о работе Выветривание пород