Альтернативные источники энергии

Автор работы: Пользователь скрыл имя, 15 Марта 2012 в 17:18, курсовая работа

Краткое описание

Актуальность данной темы: к нетрадиционным энергоресурсам относится солнечная, ветровая, геотермальная, биологическая энергия, энергия температурного градиента океанских вод. В настоящее время доля их использования в мировой электроэнергетике составляет менее 1% из-за технологических трудностей освоения и высокой стоимости производимой энергии, но на эти виды приходится значительная часть общего энергетического потенциала планеты.
Целью курсовой работы является изучение малоотходных энергосберегающих технологий.
Для достижения поставленной цели решались следующие задачи:
1. Рассмотреть традиционные и альтернативные источники энергии
2. Рассмотреть виды альтернативной энергетики
3. Изучить использование альтернативных источников энергии в России и Калининградской области.

Прикрепленные файлы: 1 файл

курсовая альтерн источ энергии.doc

— 153.50 Кб (Скачать документ)

На скорость ветра оказывают значительное влияние географические условия и характер земной поверхности, включая различные природные и искусственные препятствия, такие, как холмы и пр., а также деревья и здания. По этой причине ВЭУ располагают, по возможности, на возвышенных и удаленных от высоких деревьев, жилых домов и других сооружений местах, т.к. такие препятствия снижают скорость ветра и приводят к завихрениям потока, затрудняющим преобразование энергии ветра.

Энергия, заключенная в ветре, находится в кубической зависимости от величины скорости ветра. Удвоение скорости ветра дает увеличение энергии в 8 раз. Таким образом, средняя скорость ветра 5 м/с может дать примерно в 2 раза больше энергии, чем ветер со средней скоростью 4 м/с.

Характеристики ветра измеряются на метеостанциях. На основе данных многолетних наблюдений скоростей ветра в различных областях России составляются специализированные карты ветров.

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с среднегодовыми скоростями ветра более 5м/сек успешно конкурируют с традиционными источниками электроснабжения.

Преобразование энергии ветра в механическую, электрическую или тепловую осуществляется в ветроустановках с горизонтальным или  вертикальным расположением вала ветротурбины. Ветроэнергетические установки являются основным способом преобразования ветровой энергии в электрическую энергию.

Наиболее распространенным типом ВЭУ является ветровая турбина с горизонтальным валом, на котором установлено рабочее колесо с различным числом лопастей - чаще всего 2-3. Многолопастные колеса применяются в малых установках, предназначенных для работы при невысоких скоростях ветра. Турбина и электрогенератор размещаются в гондоле, установленной на верху мачты. Спектр единичных мощностей выпускаемых ветроустановок в мире весьма широк: от нескольких сот Вт до 2-4 МВт.

Ветряные электростанции с вертикальной осью вращения менее популярны. Генератор находится под мачтой, необходимость ориентации на ветер отсутствует. Ветряные электростанции с вертикальной осью вращения требуют для нормальной работы высоких скоростей ветра и предварительного запуска от внешнего источника.

Малые ВЭУ (мощностью до 100 кВт) находят широкое применение для автономного питания потребителей, и сферы их использования во многом совпадают с фотопреобразователями. Особенно эффективно использование малых установок для водоснабжения (подъем воды из колодцев и скважин, ирригация). Автономные малые ветроустановки могут комплектоваться с аккумуляторами электрической энергии и/или работать совместно с дизельгенераторами. В ряде случаев используются комбинированные ветро-солнечные установки, позволяющие обеспечивать более равномерную выработку электроэнергии, учитывая то обстоятельство, что при солнечной погоде ветер слабеет, а при пасмурной - наоборот, усиливается.

Крупные ветроустановки (мощностью более 100 кВт), как правило, - сетевые, т.е. предназначены для работы на электрическую сеть.

Удельная стоимость крупных ВЭУ сегодня лежит в интервале 800-1000$/кВт, а малых ВЭУ, как правило, выше и увеличивается с уменьшением мощности, достигая величины 3000 $/кВт (иногда и выше) для установок мощностью от нескольких сот Вт до 1 кВт.

Ветряные электростанции-производители

VESTAS, NORDEX, PANASONIC, VERGNET, ECOTECNIA, SUPERWIND

Ветроэлектростанции применяются в странах, имеющих подходящий климат, невысокий рельеф и испытывающих дефицит природных ресурсов.

Мировым лидером в использовании ветряных электростанций является Германия, в которой за небольшой промежуток времени построено ~9000 МВт мощности. Единичная мощность ветроэлектрических станций увеличилась до 3 МВт. Производство ветряных электростанций стало значительной частью экспорта Дании и Германии.

Достоинства и недостатки ветряных электростанций

Преимущества

Ветряные электростанции не загрязняют окружающую среду вредными выбросами. Ветровая энергия, при определенных условиях может конкурировать с невозобновляемыми энергоисточниками

Недостатки

Ветер от природы нестабилен, с усилениями и ослаблениями. Это затрудняет использование ветровой энергии. Ветряные электростанции создают шумы. По правилам ветряные установки строятся на таком расстоянии от зданий, чтобы шум не превышал 35-40 децибел.

Ветряные электростанции создают помехи телевидению и радиосигналам.

Ветряные электростанции причиняют вред птицам, если размещаются на путях миграции и гнездования.

 

 

 

 

 

 

 

 

2.2.1.     Ветер как источник энергии в России

В России валовой потенциал ветровой энергии - 80 трлн. кВт/ч в год, а на Северном Кавказе - 200 млрд. кВт/ч (62 млн. тонн усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива.

В перспективных для применения ВЭУ регионах среднегодовая скорость ветра должна быть 4 - 6 м/с и более. Россия располагает значительными ресурсами ветровой энергии, они сосредоточены главным образом в тех регионах, где отсутствует централизованное энергоснабжение. Такая ситуация характерна для всего Арктического побережья от Кольского полуострова до Чукотки, а также для побережья и островных территорий Берингова и Охотского морей. География распределения ветроэнергетических ресурсов позволяет рационально их использовать как автономными ВЭУ, так и крупными ВЭС в составе местных энергетических систем.

На севере страны в районе Воркуты работает Заполярная ВЭС мощностью 1500 кВт (6 ВЭУ по 250 кВт). На юге, в Калмыкии, введена в эксплуатацию установка мощностью 1000 кВт. На западе, в Калининградской области, работают несколько опытных ветроустановок датского производства, и создан ветропарк мощностью более 5 МВт. На крайнем Северо-востоке страны в районе Анадыря в 2002 г. построен ветропарк из 10 ВЭУ типа АВЭ-250С. Удельные затраты на строительство ветропарка составили 1800 $/кВт, с учетом транспортных расходов, налогов, пошлин и т.п. Все перечисленные опытные установки работают совместно с электрической сетью.

 

 

2.3.           Геотермальная энергия

Говоря просто геотермальная энергия—это энергия внутренних областей Земли.

Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. тонн усл. топлива, что в 1700 раз больше мировых геологических запасов органического топлива.

Геотермальная энергия может быть использована двумя основными способами —для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятий. Для какой из этих целей она будет использоваться зависит от формы в которой она поступает в наше распоряжение Иногда вода вырывается из-под земли в виде чистого "сухого пара" т е пара без примеси водяных капелек Этот сухой пар может быть непосредственно использован для вращения турбины и выработки электроэнергии. Конденсационную воду можно возвращать в землю и при ее достаточно хорошем качестве—сбрасывать в ближний водоем.

В других местах, где имеется смесь воды с паром (влажный пар), этот пар отделяют и затем используют для вращения турбин (капли воды повредили бы турбину). Наконец, в большинстве месторождений есть только горячая вода, и энергию здесь можно вырабатывать, пользуясь этой водой для перевода изобутана в парообразное состояние, с тем, чтобы этот изобутановый «пар» вращал турбины. Такой процесс называют системой с бинарным циклом. Горячей водой можно непосредственно обогревать жилища, общественные здания и предприятия (централизованное теплоснабжение).

 

 

Геотермальные тепловые электростанции (ГеоТЭС) используют в качестве источника энергии естественные парогидротермы, залегающие на глубине до 5 км. Геотермальная энергетика развивается достаточно интенсивно в США, на Филиппинах, в Мексике, Италии, Японии, России. Самая мощная ГеоТЭС (50 МВт) построена в США — ГеоТЭС Хебер.

Запасы геотермальной энергии составляют 200 ГВт. Геотермальные ресурсы распределены неравномерно, и основная их часть сосредоточена в районе Тихого океана.

Достоинства и недостатки геотермальной энергетики

Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года. Геотермальная энергия своим "проектированием" обязана раскаленному центральному ядру Земли, с громадным запасом тепловой энергии. Только в верхнем трехкилометровом слое Земли запасено количество тепловой энергии, эквивалентное энергии примерно 300 млрд. тонн угля. Тепло центрального ядра Земли имеет прямой выход на поверхность Земли через жерла вулканов и в виде горячей воды и пара.

Проблемы, возникающие при использовании подземных термальных вод

Главная из них заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

 

2.3.1.     Геотермальные источники энергии в России

В России ресурсы геотермальной энергии только в верхнем слое коры глубиной 3 км составляют 180 трлн. тонн усл. топлива. Использование только около 0,2 % этого потенциала могло бы покрыть потребности страны в энергии. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов. Именно из-за того, что эти условия до сих пор не соблюдались при попытках создания в стране опытных установок по использованию геотермальной энергии, мы сегодня не можем индустриально освоить такие несметные запасы энергии

В России геотермальные источники экономически расположены невыгодно. Камчатка, Сахалин и Курильские острова отличаются слабой инфраструктурой, высокой сейсмичностью, малонаселенностью, сложным рельефом местности. Общие запасы этого вида энергии в России оцениваются в 2000 МВт. В настоящее время в России действует Паужетская ГеоТЭС на Камчатке мощностью 11 МВт.

Так же, по имеющимся данным, в Западной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70-9О°С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечено-Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России.

В Дагестане уже длительное время термальные воды используются для теплоснабжения. За 15 лет откачано более 97 млн. м3 термальной воды для теплоснабжения, что позволило сэкономить 638 тыс. тонн усл. топлива.

В Махачкале термальной водой отапливаются жилые здания общей площадью 24 тыс. м2, в Кизляре - 185 тыс. м2. Перспективны запасы термальных вод в Грузии, которые допускают расход в сутки 300-350 тыс. м с температурой до 80оС. Столица Грузии находится над месторождением термальных вод с метановоазотным и сероводородным составом и температурой до 100°С.

Итак, достоинствами геотермальной энергии можно считать практическую неисчерпаемость ресурсов, независимость от внешних условий, времени суток и года, возможность комплексного использования термальных вод для нужд теплоэлектроэнергетики и медицины. Недостатками ее являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы.

 

2.4.           Альтернативная гидроэнергетика

Одним из наиболее эффективных направлений развития нетрадиционной энергетики является использование энергии небольших водотоков с помощью микро - и малых ГЭС. Это объясняется, с одной стороны, значительным потенциалом таких водотоков при сравнительной простоте их использования, а с другой – практическим исчерпанием гидроэнергетического потенциала крупных рек в регионах.

Объекты малой гидроэнергетики условно делят на два типа: “мини” - обеспечивающие единичную мощность до 5000 кВт, и “микро” - работающие в диапазоне от 3 до 100 кВт.

Гидростанции и география их применения

Гидроагрегат малой ГЭС (МГЭС) состоит из турбины, генератора и системы автоматического управления.

По характеру используемых гидроресурсов МГЭС можно разделить на следующие категории:

-новые русловые или приплотинные станции с небольшими водохранилищами;

- станции, использующие скоростную энергию свободного течения рек;

- станции, использующие существующие перепады уровней воды в самых различных объектах водного хозяйства - от судоходных сооружений до водоочистных комплексов (а сейчас уже существует опыт использования питьевых водоводов, а также промышленных и канализационных стоков).

Использование энергии небольших водотоков с помощью малых ГЭС является одним из наиболее эффективных направлений развития возобновляемых источников энергии и в нашей стране. Основные ресурсы малой гидроэнергетики в России сосредоточены на Северном Кавказе, на Дальнем Востоке, на Северо-Западе (Архангельск, Мурманск, Калининград, Карелия), на Алтае, в Туве, в Якутии и в Тюменской области

«Микро» ГЭС (мощностью до 100 кВт) можно установить практически в любом месте. Гидроагрегат состоит из энергоблока, водозаборного устройства и устройства автоматического регулирования. Используются микроГЭС как источники электроэнергии для дачных поселков, фермерских хозяйств, хуторов, а также для небольших производств в труднодоступных районах - там, где прокладывать сети невыгодно.

Экологичность и экономичность мини-энергетики уже давно привлекли внимание и иностранцев. Микро ГЭС работают в Японии, Южной Корее, Бразилии, Гватемале, Швеции, Польше.

Информация о работе Альтернативные источники энергии