Автор работы: Пользователь скрыл имя, 14 Января 2014 в 19:52, шпаргалка
Работа содержит ответы на вопросы для экзамена (зачета) по "Материаловедению"
Кремний - вводится для раскисления. Полностью растворим в феррите. Увеличивает прочность, износостойкость и придает антифрикционные и упругие качества. Более 2% - снижает пластичность. Повышает прокаливаемость, но увеличивает температуры закалки, нормализации и отжига.
Фосфор - Растворяясь в феррите, вызывает хладноломкость стали. При совместном действии С и Р (Р не более 1.2%) вызывается фосфидная эвтектика, плавящаяся при Т менее 1100 С. Фосфор - вредная примесь стали. Однако повышает обрабатываемость резанием и в присутствии меди повышает сопротивление коррозии.
Сера - нерастворима в железе, образует с Fe соединение FeS сульфид железа. Последний входит в состав эвтектик, плавящихся при 988 С. Наличие зерен хрупкой и легкоплавящейся эвтектики по границам зерен стали делает ее при температурах 800 С и выше (в районе температур красного каления) - красноломкой. В т.ж. время, сера повышает обрабатываемость резанием. Вредное влияние серы нейтрализуют введением марганца, образующего с ней сульфид MnS. MnS при горячей обработке давлением деформируется и создает продолговатые линзы - строчки. Их присутствие стали, как и других включений, в стали не допустимо для ответственных изделий. MnS стремятся перевести в шлак при плавке стали.
Водород, азот, кислород - растворяются в стали. Кислород и азот образуют твердые труднодеформирующиеся вредные включения. Водород вызывает флокены. А газы вообще - эффекты деформационного старения, снижающие усталостные характеристики (вязкость и порог хладноломкости). Неметаллические включения после обработки давлением создают - полосчатость (или строчечность), вызывающую сильную анизотропию свойств. Для устранения вредного влияния растворяющихся газов применяют вакуумную разливку стали и специальные приемы раскисления.
11. Классификация углеродистых сталей. Общая характеристика. Маркировка
Углеродистые стали классифицируют по структуре, способу производства и раскисления, по качеству.
По структуре различают: 1) доэвтектоидную сталь, содержащую до 0,8 % С, структура которой состоит из феррита и перлита; 2) эвтектоидную, содержащую около 0,8 % С, структура которой состоит только из перлита; 3) заэвтектоидную, содержащую 0,8–2,14 % С; ее структура состоит из зерен перлита, окаймленных сеткой цементита.
По
способу производства различают
стали, выплавленные в электропечах,
мартеновских печах и кислородно-
По способу раскисления различают кипящие, полуспокойные и спокойные стали.
Кипящая сталь наиболее дешевая, так как при ее выплавке расходуется минимальное количество специальных добавок и обеспечивается максимальный выход годного продукта. Пониженное содержание кремния и марганца обусловливает меньшую прочность и большую пластичность, чем у спокойной стали. Недостатками кипящей стали являются развитая ликвация, в головной части слитка неоднородность содержания углерода достигает 400 %, серы — 900 % от их среднего содержания.
Спокойная сталь гораздо однороднее по химическому составу, чем кипящая сталь. Благодаря присутствию в спокойной стали остаточного (кислоторастворимого) алюминия у нее ниже склонность к росту зерна, чем у кипящей стали. Поэтому прочность и хладостойкость более однородного и мелкозернистого проката из спокойной стали выше, чем проката из кипящей стали.
Но при затвердевании спокойной стали в изложницах образуется большая усадочная раковина, для удаления которой прибегают к обрезанию слитка (12–16 % по массе).
Существует сталь с промежуточной степенью раскисления — полуспокойная. В отличие от кипящей она обрабатывается перед разливкой небольшим количеством раскислителей.
Стали обыкновенного качества изготавливают по ГОСТ 380–94. Выплавка их обычно производится в крупных мартеновских печах и кислородных конвертерах. Обозначают их буквами «Ст» и цифрами от 0 до 6, например: Ст0, Ст1, Ст6. Буквы «Ст» обозначают «Сталь», цифры — условный номер марки стали в зависимости от ее химического состава. В конце обозначения марки стоят буквы «кп», «пс», «сп», которые указывают на способ раскисления: «кп» — кипящая, «пс» — полуспокойная, «сп» — спокойная.
Качественные углеродистые стали выплавляются в электропечах, кислородных конвертерах и мартеновских печах по ГОСТ 1050–88. К ним предъявляются более жесткие требования по содержанию вредных примесей (серы — не более 0,04 %, фосфора — не более 0,035 %). Для стали марок 11кп и 18кп, применяемой для плакирования, содержание серы и фосфора должно быть не более 0,035 %.
Качественные углеродистые стали маркируют двузначными цифрами 05, 10, 15, ..., 60, указывающими среднее содержание углерода в сотых долях процента
При
обозначении кипящей или
По содержанию углерода качественные углеродистые стали подразделяются на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3–0,5 % С) и высокоуглеродистые конструкционные (до 0,65 % С).
Высококачественные стали – это стали в которых содержание серы и фосфора сведено к минимальным показателям.
В России принята буквенно-цифровая система маркировки легированных сталей. Каждая марка стали содержит определенное сочетание букв и цифр. Легирующие элементы обозначаются буквами русского алфавита: Х — хром, Н — никель, В — вольфрам, М — молибден, Ф — ванадий, Т — титан, Ю — алюминий, Д — медь, Г — марганец, С — кремний, К — кобальт, Ц — цирконий, Р — бор, Ц — ниобий. Буква А в середине марки стали показывает содержание азота, а в конце марки — то, что сталь высококачественная.
Для конструкционных марок стали первые две цифры показывают содержание углерода в сотых долях процента. Если содержание легирующего элемента больше 1%, то после буквы указывается его среднее значение в целых процентах. Если содержание легирующего элемента около 1% или меньше, то после соответствующей буквы цифра не ставится.
В качестве основных легирующих элементов в конструкционных сталях применяют хром до 2 %, никель 1–4 %, марганец до 2 %, кремний 0,6–1,2 %. Такие легирующие элементы, как Мо, W, V, Ti, обычно вводят в сталь в сочетании с Cr, Ni с целью дополнительного улучшения тех или иных физико-механических свойств. В конструкционных сталях эти элементы обычно содержатся в следующих количествах, %: Мо 0,2–0,4; W 0,5–1,2; V 0,l–0,3; Ti 0,1–0,2.
Например, сталь 18ХГТ содержит, %: 0,17–0,23 С; 1,0–1,3 Cr, 0,8–1,1 Mn, около 0,1 Ti;
Сталь 38ХН3МФА (%) — 0,33–0,40 С; 1,2–1,5 Cr; 3,0–3,5 Ni; 0,35–0,45 Мо; 0,1–0,18 V; сталь ЗОХГСА — 0,32–0,39 С; 1,0–1,4 Cr; 0,8–1,1 Mn; 1,1–1,4 Si.
В инструментальных сталях в начале
обозначения марки стали
Например, сталь 3Х2В8Ф содержит, %: 0,3–0,4 С; 2,2–2,7 Cr; 7,5–8,5 W; 0,2–0,5 V; сталь 5ХНМ — 0,5–0,5 С; 0,5–0,8 Сr; 1,4–1,8 Ni; 0,19–0,30 Мо; ХВГ — 0,90–1,05 С; 0,9–1,2 Cr; 1,2–1,6 W; 0,8–1,1 Mn.
В обозначении марки
Особовысококачественную сталь обозначают добавлением через тире в конце марки буквы «Ш» или других букв (табл. 5.6). Это означает, что стал подвергалась электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов.
В конце марки конструкционной стали могут быть дополнительные буквенные обозначения: ПП — сталь пониженной прокаливаемости, Л — литейная, К — сталь для котлов и др.
Строительную сталь обозначают буквой «С» (строительная) и цифрами, условно соответствующими пределу текучести проката. Буква «К» в конце марки — вариант химического состава стали с повышенной коррозионной стойкостью в атмосфере, а буква «Т» — термоупрочненный прокат (например, С245, С345Т, С390К).
12. Чугуны. Разновидности чугунов. Маркировка
Чугун отличается от стали: по составу – более высокое содержание углерода(2.14-6.67%) и примесей; по технологическим свойствам – более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.
В зависимости от состояния углерода в чугуне различают:
Чугун маркируется буквами СЧ и цифрами, первая из которых характеризует предел прочности чугуна данной марки при растяжении, вторая - при изгибе (кг/мм2). Наибольшее распространение получили чугуны марок: СЧ12-28; СЧ15-32; СЧ18-36; СЧ 21-40; СЧ 24-44; СЧ 28-48; СЧ 32-52; СЧ 38-60, причем первые пять марок имеют перлитно-ферритную металлическую основу, последние три - перлитную. Прочность серых чугунов всех марок при сжатии значительно превышает прочность при растяжении. Например, для чугуна марки СЧ 24-44, имеющего предел прочности при растяжении 24 кгс/мм2, предел прочности при сжатии составляет 85 кгс/мм2. Для увеличения прочности чугуна графитовым включением придают шарообразную форму путем введения магния в ковш перед разливкой. При этом чугун приобретает и некоторую пластичность. Высокопрочные чугуны маркируют буквами ВЧ и цифрами, первая из которых характеризует временное сопротивление чугуна при растяжении (кгс/мм2), вторая - относительное удлинение (%). Например, ВЧ 60-2 или ВЧ 40-10.
Ковкие чугуны маркируют буквами КЧ и цифрами, обозначающими временные сопротивления при растяжении (кгс/мм2) и относительное удлинение (%). Примерами марок ковких чугунов могут служить КЧ 38-8; КЧ 35-10; КЧ 37-12; КЧ 30-6 с ферритной металлической основой и КЧ 45-6; КЧ 50-4 и КЧ 60-3, имеющие ферритно-перлитную основу.
13. Микроструктура и свойства чугуна
Конечно, по сравнению со сталью, серый чугун является хрупким и менее прочным материалом, так как графитные включения создают своеобразные "надрезы" в металлической основе, что способствует концентрации напряжений. Чем больше графита в чугуне, тем в большей степени ослабляется металлическая основа и тем ниже механические свойства серого чугуна. В серых чугунах обычно содержится 2,8-4% углерода, из них 2-3% в виде графита.
На механические свойства чугуна при одном и том же количестве графита существенно влияют размеры и форма графитных включений, а также характер их распределения. Графит в металлической основе в виде мелких разобщенных включений повышает прочность чугунов и, наоборот, в виде крупных включений больше ослабляет металлическую основу и понижает прочность чугуна. При одинаковых количестве, размерах и характере графитных включений механические свойства чугуна определяются его металлической основой: наименьшую твердость имеют чугуны на ферритной основе, наибольшую при прочих равных условиях - чугуны на перлитной основе.
Имеют значение и примеси, входящие в состав чугуна: кремний, марганец, сера и фосфор. Кремний - необходимый компонент серых чугунов, он вызывает образование графита при повышенной скорости охлаждения, например, в отливках малых сечений. Содержание кремния колеблется в пределах от 0,5 до 4,5%. Марганец присутствует в серых чугунах в количестве 0,5-1,2%, при большем содержании он отбеливает чугун и повышает его хрупкость. Сера ухудшает литейные свойства чугуна, повышает густоплавкость и усадку при затвердевании, увеличивает хрупкость и твердость, поэтому содержание серы в чугунах не должно превышать 0,06%. Фосфор улучшает литейные свойства серых чугунов: с повышением его содержания увеличивается жидкотекучесть чугунов и уменьшается усадка; содержание фосфора допускается в пределах от 6,1 до 1%.
Чугунные литые изделия
Наиболее широкое
14. Серый чугун. Струкрура, свойства, область применения.
Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.
Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами.
В зависимости от прочности серый чугун подразделяют на 10 марок (ГОСТ 1412).
Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.
Серые чугуны содержат углерода – 3,2…3,5 %; кремния – 1,9…2,5 %; марганца –0,5…0,8 %; фосфора – 0,1…0,3 %; серы – < 0,12 %.
Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритвой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.
Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении - блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.
Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, умноженное на СЧ 15.