Геодезические сети

Автор работы: Пользователь скрыл имя, 31 Мая 2012 в 22:41, курсовая работа

Краткое описание

Цель данного курсового проекта по предмету «Геодезические работы при ведении кадастра» на тему: «Геодезические сети» - освоение методов проектирования инженерно-геодезических сетей, используемых для проведения топографо-геодезических работ и решение различных задач земельного кадастра.

Содержание

Введение…………………………………………………………………………
1. Устройство геодезических сетей при съемке больших территорий…….
1.1 Триангуляция……………………………………………………………
1.2 Государственная геодезическая сеть (ГГС)…………………………...
1.3 Геодезические сети сгущения…………………………………………..
1.4 Сети специального назначения (ОМС)………………………………..
1.5 Съёмочные сети………………………………………………………….
1.6 Системы координат WGS-84 и СК-95…………………………………
2. Измерения в геодезических сетях………………………………………….
2.1 Устройство и измерение углов теодолитом 3Т2КП, (3Т5КП)………
2.2 Устройство светодальномера СТ-5 («Блеск») и измерение и расстояний……………………………………………………………………
2.3 Устройство электронного тахеометра. Измерение им горизонтальных и вертикальных углов, расстояний, координат Х, У, Н точек местности……………………………………………………………………..
2.4 Определение положения точек земной поверхности с помощью геодезических спутниковых систем…………………………………………
3. Погрешности геодезических измерений…………………………………..
3.1 Геодезическое измерение, результат измерения, методы и условия измерений. Равноточные и неравноточные измерения…………………..
3.2 Классификация погрешностей геодезических измерений. Средняя квадратическая погрешность. Формы Гаусса и Бесселя для её вычисления……………………………………………………………………
3.3 Оценка точности по разностям двойных измерений и по невязкам в полигонах и ходах…………………………………………………………..
4. Уравнивание системы ходов съемочной сети…………………………….
4.1 Общее понятие о системах ходов и их уравнивании…………………
5. Тахеометрическая съёмка…………………………………………………..
5.1 Плановое и высотное обоснование тахеометрической съёмки………
5.2 Нанесение съёмочных и реечных точек……………………………….
5.3 Интерполирование отметок пикетов и вычерчивание горизонталей….
5.4 Нанесение ситуации в условных знаках……………………………….
5.5 Оформление плана тахеометрической съёмки.………………………..
Заключение…………………………………………………………………..
Список использованной литературы………………………………………

Прикрепленные файлы: 1 файл

Введение.doc

— 443.00 Кб (Скачать документ)

Систематические погрешности измерений – постоянная составляющая, связанная с дефектами: зрение, неисправность технических средств, температура. Систематические погрешности могут быть как одностороннего действия, так и переменного (периодические погрешности). Их стремятся по возможности учесть или исключить из результатов измерений при организации и проведении работ.

Случайные погрешности измерений неизбежно сопутствуют всем измерениям. Погрешности случайные исключить нельзя, но можно ослабить их влияние на искомый результат за счет проведения дополнительных измерений. Это самые коварные погрешности, сопутствующие всем измерениям. Могут быть разные как по величине, так и по знаку.

 

E = Q + O +∆

 

Если грубые и систематические погрешности могут быть изучены и исключены из результата измерений, то случайные могут быть учтены на основе глубокого измерения. Изучение на основе теории вероятностей.

На практике сложность заключается в том, что измерения проводятся какое-то ограниченное количество раз и поэтому для оценки точности измерений используют приближённую оценку среднего квадратического отклонения, которую называют среднеквадратической погрешностью (СКП).

Гауссом была предложена формула среднеквадратической погрешности:

 

∆2ср = (∆21 + ∆22 +… +∆2n) / n,

∆2 = m2 = (∆21 + ∆22 +… +∆2n) / n,

∆ = m,

∆ср = m = √(∑∆2i / n)

 

Формула применяется, когда погрешности вычислены по истинным значениям.

Формула Бесселя:

 

m = √(∑V2i / (n-1))

 

Средняя квадратическая погрешность арифметической середины в Ön раз меньше средней квадратической погрешности отдельного измерения

 

М=m/Ön

 

При оценке в качестве единицы меры точности используют среднеквадратическую погрешность с весом равным единице. Её называют средней квадратической погрешностью единицы веса.

µ2 = P×m2 – µ = m√P, m = µ / √P, т.е. средняя квадратическая погрешность любого результата измерения равна погрешности измерения с весом 1 (µ) и делённая на корень квадратный из веса этого результата (P).

При достаточно большом числе измерений можно записать ∑m2P=∑∆2P (так как ∆ = m):

µ = √(∑(∆2×P)/n), т.е. средняя квадратическая погрешность измерения с весом, равным 1 равна корню квадратному из дроби в числителе которого сумма произведений квадратов абсолютных погрешностей неравноточных измерений на их веса, а в знаменателе – число неравноточных измерений.

Средняя квадратическая погрешность общей арифметической середины по формуле:

 

M0 = µ / √∑P

Подставив вместо µ её значение получим :

 

M0 = √(∑∆2×P/n) / (√∑P) = √[(∑∆2×P) / n×(∑P)]

 

M0 = √[ (∆12P1 + ∆22P2 +… + ∆n2Pn) / n×(P1 + P2 + … + Pn) ] – формула Гаусса, средняя квадратическая погрешность общей арифметической середины равна корню квадратному из дроби, в числителе которой сумма произведений квадратов погрешностей неравноточных измерений на их веса, а знаменатель – произведение количества измерений на сумму их весов.

µ = √ [∑( V2×P ) / (n-1)] Это формула Бесселя для вычисления средней арифметической погрешности с измерением веса, равным 1 для ряда неравноточных измерений по их вероятнейшим погрешностям. Она справедлива для большого ряда измерений, а для ограниченного (часто на практике) содержит погрешности: mµ = µ / [2×(n-1)] – это надёжность оценки µ.

 

3.3 Оценка точности по разностям двойных измерений и по невязкам в полигонах и ходах.

 

В практике геодезических работ часто одну и ту же величину измеряют дважды. Например, стороны теодолитного хода в прямом и обратном направлении, углы двумя полуприемами, превышения – по черной и красной стороне вех. Чем точнее произведены измерения, тем лучше сходимость результатов в каждой паре.

mlср. = ½ √∑d2/n

где d – разности в каждой паре; n – количество разностей.

Формула Бесселя:

mlср = ½ √∑d2/n-1

Если измерения должны удовлетворять какому-либо геометрическому условию, например, сумма внутренних углов треугольника должна быть 180˚, то точность измерений можно определить по невязкам получающимся в результате погрешностей измерений.

μ=√∑ [f2 /n]/N,

 

где - СКП одного угла;

f – невязка в полигоне;

N – количество полигонов;

n – количество углов в полигоне.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Уравнивание системы ходов съемочной сети

 

4.1 Общее понятие о системах ходов и их уравнивании

 

Координаты пунктов могут быть определены положением через них теодолитных ходов, опирающихся в начале и в конце хода на пункты с известными координатами и стороны с известными дирекционными углами. При математической обработке результатов таких измерений координаты определяемых пунктов получают однозначно, а их точность зависит от точности полевых измерений, точности исходных данных и принятого метода обработки измерений.

На практике возможно появление ситуаций, когда в геодезических построениях возникает неоднозначность получения определяемых величин, например координат пунктов.

С этой точки зрения рассмотрим геодезическое построение в виде системы трех теодолитных ходов с одной узловой точкой. Практическая необходимость построения такой системы обусловлена невозможностью определения положения пунктов путем проложения через них одного теодолитного хода (например, из-за отсутствия на местности необходимых видимостей). Ограничивающим фактором может быть превышение допустимой длины одиночного теодолитного хода или нарушением каких-либо других нормативных требований.

В системе теодолитных ходов положение пунктов определено от трех исходных – В, D, F, тогда как для этой цели достаточно было двух из них, следовательно, в сети имеются избыточные измерения (избыточные в смысле их необходимого числа при бесконтрольном определении координат пунктов). Так, например, координаты любого определяемого пункта сети, могут быть получены, как минимум, дважды. В таком случае говорят о необходимости уравнения.

Способы уравнения разделяются на строгие, когда уравнение производится под условием минимума суммы произведение квадратов поправок в измерение величины, и нестрогие (раздельные), когда сначала уравниваются углы, а затем раздельно между собой приращения координат.

При выборе способа уравнения исходят, прежде всего, из необходимой точности получения координат пунктов. Если раздельное уравнение обеспечивает указанное требование, то его применение в настоящее время предпочтительно, т. к. упрощает процесс вычислений. Последний может быть выполнен как посредством традиционных средств, так и с помощью микрокалькуляторов или ЭВМ.

При раздельном уравнении системы теодолитных ходов с одной узловой точкой уравнивают сначала измеренные углы, а затем по полученным вероятнейшим значениям дирекционных углов и измеренным горизонтальным положениям линий вычисляю приращение координат, которые уравнивают отдельно, приращения по оси абсцисс и приращения по оси ординат.

Уравнивание системы проводят раздельно, т.е. вначале уравнивают горизонтальные углы, а затем – приращения координат.

Вычисление координат пунктов теодолитных ходов производят в ведомости координат, куда вписывают измеренные углы, горизонтальные проложения, координаты исходных геодезических пунктов.

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Тахеометрическая съёмка

 

5.1 Плановое и высотное обоснование тахеометрической съёмки

 

Съёмка местности при тахеометрической съёмке заключается в определении наиболее характерных точек, отображающих контуры предметов и рельеф местности. На каждую снимаемую точку ставится рейка по которой определяются полярные координаты, направление, угол наклона. Снимаемые реечные точки могут быть контурными, рельефными, контурно-рельефными. Во всех случаях каждый раз берутся отсчёты по дальномерным нитям, горизонтальному и вертикальному кругу.

При тахеометрической съёмке работа на станции выполняется в следующей последовательности:

- устанавливают теодолит над точкой съёмочного обоснования и приводят его в рабочее положение, т.е. центрируют и нивелируют. Затем измеряют высоту инструмента, отмечают её на рейке и записывают в тахеометрический журнал

- наводят теодолит на соседнюю точку съёмочного обоснования, средней горизонтальной нитью на отмеченную высоту инструмента и берут отсчёт по КЛ. Переводят трубу через зенит и снова при КП наводят на высоту инструмента и берут отсчёт. Вычисляют место нуля.

- при КЛ совмещают нуль алидады с нулём лимба, т.е. ставят отсчёт 0-0 и закрепляют защёлкой.

- наводят на точки съёмочного обоснования по которым брали вертикальные углы

- открепляют защёлку и наводят на все реечные точки, берут отсчёты и отсчитывают по рейке дальномерное расстояние

- составляются кроки, на которых изображаются все реечные точки, зарисовывается ситуация и показывается рельеф

Далее выполняются камеральные работы в следующей последовательности:

1. Поверка записей в тахеометрическом журнале

2. Вычисление горизонтальных превышений и проложений

3. Вычисление отметок реечных точек

4. Построение координатной сетки

5. Нанесение по координатам точек съёмочного обоснования

6. Нанесение реечных точек по полярным координатам

7. Построение контуров по данным тахеометрического журнала и крок

8. Зарисовка рельефа по высотам реечных точек и заметкам в кроках

9. Вычерчивание контуров и рельефа по условным знакам заданного масштаба

10. Зарамочное оформление составленного плана

Главными особенностями тахеометрической съёмки является то, что на местности измеряются углы и расстояния, рисуется рельеф, составляются кроки, план составляется в камеральных условиях.

 

5.2 Нанесение съёмочных и реечных точек

 

Станции, с которых ведется тахеометрическая съемка, служат точки съемочного обоснования

Порядок работы на станции:

Устанавливают теодолит над точкой съемочного обоснования, центрируют, приводят в рабочее положение;

Наводят трубу на веху, устанавливаемую на точку съемочного обоснования или тахеометрического хода, и совмещают нуль лимба горизонтального круга с нулем алидады;

Определяют место нуля вертикального круга по трем точкам;

При определении пикетных точек измерения ведут при одном положении круга: для определения превышения трубу наводят на высоту прибора.

На рейке при помощи резиновой тесьмы фиксируют высоту прибора, а при использовании реек в выдвижным кольцом нуль рейки устанавливают на высоту прибора.

Съемка предметов местности и контуров угодий производится полярным способом определением по дальномеру кипрегеля расстояний от приборов до пикетов. При съемке контура рейку ставят на всех поворотах границы контура, съемку замкнутого контура необходимо закончить на той же точке, с которой начиналась съемка. Кроме высот пикетов необходимых для проведения горизонталей, следует определять отметки каменных, бетонных и земляных плотин, дам, шлюзов, мостов, углов кварталов. Реечные точки (пикеты) должны быть набраны такой густоты, чтобы расстояния между ними были не более 20 м. для масштаба 1:500. При высоте сечения рельефа менее 1 м. отметки вычисляют и выписывают с точностью до 1 см. Съемку рельефа в застроенной части города производят на планшетах после нанесения контура застройки, если он снимался другим методом.

После построения съемочного обоснования по координатам на план наносят, пользуясь способом полярных координат, реечные точки. При этом пользуются круговым транспортиром (тахеографом) или простым транспортиром и масштабной линейкой. Центр транспортира совмещают с точкой съемочного обоснования (например, вершиной I). Нулевое деление транспортира нужно совместить со стороной хода, по которой ориентирован лимб прибора в процессе съемки (например, I–II), в соответствии с записью в тахеометрическом журнале. Помня, что отсчеты на лимбе возрастают по часовой стрелке, горизонтальные углы (отсчеты по горизонтальному кругу – из соответствующей графы тахеометрического журнала) надо откладывать по часовой стрелке. Отложив с помощью транспортира отсчет по горизонтальному кругу, получаем направление на реечную точку, которое временно закрепляем на бумаге тонкой чертой мягким карандашом. На полученном направлении в масштабе плана откладывают горизонтальное расстояние. Нанесенная точка отмечается условным знаком.

Информация о работе Геодезические сети