Автор работы: Пользователь скрыл имя, 16 Мая 2014 в 15:58, лекция
Система кровообращения.
Любой системе кровообращения требуется три компонента:
1. насос (сердце);
2. система каналов (кровеносные сосуды);
3. жидкостная среда (кровь).
Рассмотрим каждый из них.
Регулярные занятия физическими упражнениями связаны с тренировкой и совершенствованием также и парасимпатического отдела вегетативной нервной системы, вынуждая организм экономно расходовать свои энергетические резервы.
Эндокринная система
Эндокринную систему в организме человека представляют железы внутренней секреции — эндокринные железы.
Эндокринные железы называются так потому, что не имеют выводного потока, они выделяют продукт своей деятельности — гормон прямо в кровь, а не через трубочку или проток, как делают экзокринные железы. Гормоны эндокринных желез передвигаются с кровью к клеткам организма. Гормоны обеспечивают гуморальную, в добавок к нервной, регуляцию физиологических процессов в организме. Часть гормонов продуцируется только в определенный возрастной период, большинство же — на протяжении всей жизни человека. Они могут тормозить или ускорять рост организма, половое созревание, физическое и психическое развитие, регулировать обмен веществ и энергии, деятельность внутренних органов и т.д.
Рассмотрим основные гормоны, выделяемые эндокринной системой.
Гипофиз выделяет более 20 гормонов; например, гормон роста регулирует рост тела, действует на обмен; пролактин поддерживает секрецию эстрогенов и прогестерона яичниками, отвечает за выделение молока и регулирует "материнский инстинкт"; окситоцин стимулирует родовую деятельность; антидиуретический гормон (вазопрессин) поддерживает уровень содержания воды в организме. Некоторые гормоны стимулируют активность других желез внутренней секреции: тиреотропный гормон стимулирует рост щитовидной железы и образование тироксина, адренокортикотропный гормон (АКТГ) стимулирует рост коры надпочечников и образование в ней гормонов.
Щитовидная железа — гормон тироксин стимулирует метаболизм во всем организме.
Паращитовидные железы — паратгормон, контролирующий уровень кальция и фосфора в крови, вызывает переход кальция в кровь из костей и зубов.
Гормон кальцитонин стимулирует отложение фосфорнокислого кальция в костях.
Поджелудочная железа — гормоны инсулин (понижает концентрацию сахара в крови, увеличивает запасы гликогена), глюкагон (стимулирует превращение гликогена печени в глюкозу крови).
Надпочечники — адреналин, усиливающий действие симпатических нервов, побуждающий организм к действию; кортизол, помогающий управлять уровнями стресса, стимулирующий превращение белков в углеводы; альдостерон, регулирующий обмен натрия и калия в организме и норадреналин, вызывающий сужение кровеносных сосудов.
Половые железы — половые гормоны: мужской – тестостерон, стимулирующий развитие и сохранение мужских половых признаков; женские – эстрадиол, эстроген, стимулирующий развитие и сохранение женских половых признаков и прогестерон.
Во время мышечной работы
половые железы изменяются по-
По химическому составу гормоны можно разделить на две основные группы: протеины и производные протеинов и гормоны, имеющие кольцевую структуру, стероиды.
Инсулин — гормон поджелудочной железы — это протеин, а гормоны щитовидной железы образуются на протеиновой основе и являются производными протеина. Половые гормоны и гормоны, вырабатываемые корой надпочечников, являются стероидными гормонами.
Некоторые из перечисленных желез вырабатывают кроме гормонов еще секреторные вещества (например, поджелудочная железа участвует в процессе пищеварения, выделяя ферментативные секреты в двенадцатиперстную кишку).
У адаптированных к физическим нагрузкам лиц в процессе выполнения мышечной работы отмечается повышение активности эндокринной системы: усиливают свою секрецию гипофиз, надпочечники, щитовидная и поджелудочная железы. Выделяемые ими гормоны влияют на обмен веществ, обеспечивают высокую работоспособность, замедляют процесс утомления и ускоряют процессы восстановления функций организма.
Одним из основных признаков живого организма является обмен веществ и энергии. В организме непрерывно идут пластические процессы, процессы роста, образования сложных веществ, из которых состоят клетки и ткани. Параллельно происходит обратный процесс разрушения. Всякая деятельность человека связана с расходованием энергии. Даже во время сна многие органы (сердце, легкие, дыхательные мышцы) расходуют значительное количество энергии. Нормальное протекание этих процессов требует расщепления сложных органических веществ, так как они являются единственными источниками энергии для животных и человека. Такими веществами являются белки, жиры и углеводы. Большое значение для нормального обмена веществ имеют также вода, витамины и минеральные соли.
Обменные процессы протекают очень интенсивно. Почти половина тканей тела обновляется или заменяется полностью в течение трех месяцев.
Обмен белков. Белки представлены в живых клетках гораздо полнее, чем любые другие органические соединения, что хорошо согласуется с разнообразием выполняемых ими функций. Белки — необходимый строительный материал протоплазмы клеток. Из структурных белков состоят волосы, ногти, шелк. За сокращение мышечных волокон отвечают сократительные белки: актин и миозин. Большая часть химических реакций, протекающих в организме, регулируется ферментами, т.е. белковыми молекулами, играющими роль катализаторов. Многие гормоны (инсулин, вазопрессин), зрительный пурпур сетчатки, переносчики кислорода (гемоглобин, миоглобин), защитные вещества крови (антитела) являются белковыми телами.
Белки сложны по своему строению и весьма специфичны. Белки, содержащиеся в пище, и белки в составе нашего тела значительно отличатся по своим качествам. Но все они состоят из аминокислот. Все разнообразие белков строится из 20 аминокислот.
Аминокислоты делятся на незаменимые и заменимые. Незаменимыми называются те, которые организм получает только с пищей. Заменимые могут быть синтезированы в организме из других аминокислот. По содержанию аминокислот определяется ценность белков пищи. Вот почему белки, поступающие с пищей, делятся на две группы: полноценные, содержащие все незаменимые аминокислоты, и неполноценные, в составе которых отсутствуют некоторые незаменимые аминокислоты. Основным источником полноценных белков служат животные белки. Растительные белки (за редким исключением) неполноценные.
В тканях и клетках непрерывно идет разрушение и синтез белковых структур.
В относительно здоровом организме человека среднего возраста количество введенного азота равно количеству выделенного. Такое соотношение называется азотистым равновесием. В организме белок не откладывается про запас, не депонируется. Поэтому при тяжелых физических нагрузках, болезнях или голодании в организме может идти процесс распада собственных белков, которые организм расходует после истощения запаса углеводов и жиров. Количество выведенного азота при этом больше, чем количество поступившего. Это состояние называется отрицательным азотистым балансом.
В некоторых случаях в организме синтез белка превышает его распад. Количество выведенного азота при этом меньше количества поступающего. Такое состояние называется положительным азотистым балансом. Положительный азотистый баланс наблюдается у детей, беременных женщин, выздоравливающих больных.
Функции белка не ограничиваются пластическим значением для организма. Растворенные в плазме белки образуют коллоидный раствор крови,
Осмотическое давление белков и других коллоидов, называемое онкотическим, удерживает воду в крови. Если онкотическое давление крови очень низкое (например, при длительном белковом голодании), обратное проникновение тканевой жидкости в капилляры уменьшается, и в тканях могут возникнуть отеки. Белки плазмы крови играют роль буферных систем, поддерживающих рН крови, а в виде гемоглобина участвуют в транспорте газов. Кроме того, велика и регуляторная роль белков в обмене углеводов и жиров. Входя в состав ферментов и гормонов, белки определяют ход химических превращений в организме и интенсивность обмена веществ. Существенна роль белка в функции мышц. Белок также является энергетическим веществом (при окислении в организме может образовываться 4,1 ккал, а в лабораторных условиях еще дополнительно 1,3 ккал).
Регуляция белкового равновесия осуществляется гуморальным и нервным путями (через гормоны коры надпочечников и гипофиза, промежуточный мозг).
Азот — один из конечных продуктов окисления белка. Однако азот выделяется не в свободном состоянии, а в виде соединений с водородом — NH.4. Это соединение (аммиак) вредно для организма. Аммиак обезвреживается в печени, превращаясь в мочевину, которая выводится с мочой.
Обмен углеводов Углеводы делятся на простые и сложные. Простые углеводы называются моносахаридами (глюкоза, фруктоза, галактоза). Моносахариды хорошо растворяются в воде и поэтому быстро всасываются из кишечника в кровь. Сложные углеводы построены из двух или многих молекул моносахаридов. Соответственно они называются дисахаридами и полисахаридами. К дисахаридам относятся свекловичный сахар, молочный, солодовый и некоторые другие. Они хорошо растворяются в воде, но из-за большой величины молекул почти не всасываются в кишечнике. К полисахаридам относятся гликоген, крахмал, клетчатка. Они не растворимы в воде и могут всасываться в кровь лишь после расщепления до моносахаридов.
Углеводы поступают в организм с растительной и частично с животной пищей. Они также синтезируются в организме из продуктов расщепления аминокислот и жиров и запасаются в виде гликогена в мышцах и печени, но гликоген мышц расходуется только для мышечной работы и не может быть использован для регулирования уровня глюкозы в крови. При избыточном поступлении превращаются в жиры и в таком виде откладываются в организме.
Значение углеводов. Углеводы — важная составная часть живого организма. Однако их в организме меньше, чем белков и жиров, они составляют всего лишь около 2% сухого вещества тела.
Углеводы в организме главный источник энергии. Они всасываются в кровь в основном в виде глюкозы. Это вещество разносится по тканям и клеткам организма: в клетках глюкоза при участии ряда ферментов окисляется до Н2О и СО2 Одновременно освобождается энергия (4,1 ккал), которая используется организмом при реакциях синтеза или при мышечной работе.,
Если с пищей поступает недостаточное количество сахара, то он синтезируется из жиров и белков. Излишки сахара (после приема пищи, богатой углеводами) превращаются в печени и мышцах в гликоген и там откладываются (депонируются). Этот процесс регулируется гормоном поджелудочной железы — инсулином.
Значение углеводов при мышечной деятельности. Запасы углеводов особенно интенсивно используются при физической работе. Однако полностью они никогда не исчерпываются. При уменьшении запасов гликогена в печени его дальнейшее расщепление прекращается, что ведет к уменьшению концентрации глюкозы в крови. Мышечная деятельность в этих условиях продолжаться не может. Уменьшение содержания глюкозы в крови является одним из факторов, способствующих развитию утомления. Поэтому для успешного выполнения длительной и напряженной работы необходимо пополнять углеводные запасы организма. Это достигается увеличением содержания углеводов в пищевом рационе и дополнительным введением их перед началом работы или непосредственно при ее выполнении. Насыщение организма углеводами способствует сохранению постоянной концентрации глюкозы в крови и тем самым повышает работоспособность человека.
Углеводы следует принимать или непосредственно перед стартом, или не позднее чем за 2 ч до начала работы. Если же это делать за 30— 90 мин до старта, то начало работы совпадает с периодом усиленного депонирования углеводов. Это ведет к уменьшению глюкозы, выходящей из печени в кровь. Преобладание процессов депонирования углеводов над их расщеплением сопровождается понижением концентрации глюкозы в крови и ведет к ухудшению работоспособности организма.
Прием углеводов более чем за 2 ч до старта обеспечивает почти полное их всасывание и депонирование до начала работы. В этом случае никаких затруднений в расщеплении гликогена в печени не возникает. Прием углеводов непосредственно на старте также не создает каких-либо трудностей для расщепления. В этих условиях глюкоза начинает всасываться уже в процессе мышечной деятельности, при которой расщепление гликогена и выход глюкозы в кровь преобладает над депонированием.
Регуляция углеводного обмена. Депонирование углеводов, использование углеводных запасов печени и все другие процессы углеводного обмена регулируются центральной нервной системой. Большое значение в регуляции углеводного обмена имеет и кора больших полушарий. Одним из примеров этого может служить условнорефлекторное увеличение концентрации глюкозы в крови у спортсменов в предстартовом состоянии.
Эфферентные нервные пути, обеспечивающие регуляцию углеводного обмена, относятся к вегетативной нервной системе. Симпатические нервы усиливают процессы расщепления и выход гликогена из печени. Парасимпатические нервы, наоборот, стимулируют депонирование гликогена. Нервные импульсы могут воздействовать либо прямо на клетки печени, либо косвенным путем, через железы внутренней секреции. Гормон мозгового слоя надпочечника адреналин способствует выходу углеводов из депо. Гормон поджелудочной железы инсулин обеспечивает их депонирование. Кроме этих гормонов в регуляции углеводного обмена участвуют гормоны коркового слоя надпочечников (кортизол), щитовидной железы и передней доли гипофиза (гормон роста).
Обмен жиров
В отличие от углеводов с их довольно определенным химическим составом и такой же молекулярной структурой липиды разнообразны и по структуре и по соотношению входящих в них элементов. Однако, всем липидам присуще одно общее свойство: они все неполярны. Поэтому они растворяются в таких неполярных жидкостях, как эфир и хлороформ, но практически нерастворимы в воде.
Именно нерастворимость в воде делает липиды важнейшими компонентами мембран, разделяющих в живых организмах отсеки, или компартменты, заполненные водным содержимым. Кроме того, жиры (липиды) — главная форма хранения энергии в организме, поскольку липиды, в отличие от углеводов, могут храниться в концентрированном виде (без воды). Любое избыточное количество сахара, съеденное и не израсходованное сразу же на энергетические нужды, быстро превращается в жир. Откладываются они главным образом в подкожной жировой клетчатке, сальнике, печени и других внутренних органах. Общее количество жира у человека может составлять 10—12% массы тела, а при ожирении — 40—50%.
Информация о работе Социально-биологические основы физической культуры