Ядерный реактор

Автор работы: Пользователь скрыл имя, 22 Октября 2013 в 21:34, реферат

Краткое описание

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

Прикрепленные файлы: 1 файл

Ядерный реактор.docx

— 285.18 Кб (Скачать документ)

 

 

 

 

 

 

 

 

Реферат по теме:

“Ядерный реактор”

 

 

 

Ученика 9Д класса

МАОУ СОШ№178

Стебенькова Вячеслава

 

Устройство ядерного реактора.

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.


Реактор ВВЭР 1000. 1 — привод СУЗ; 2 — крышка реактора; 3 — корпус реактора; 4 — блок защитных труб (БЗТ); 5 — шахта; 6 — выгородка активной зоны; 7 — топливные сборки (ТВС) и регулирующие стержни;

Каждый ядерный реактор  промышленного типа представляет собой  котел, сквозь который протекает  теплоноситель. Как правило это обычная вода (ок. 75% в мире), жидкий графит (20%) и тяжелая вода (5%). В экспериментальных целях использовался берилий и предполагался углеводород.

ТВЭЛ – (тепловыделяющий элемент). Это стержни в циркониевой оболочке с ниобийным легированием, внутри которых расположены таблетки из диоксида урана.

ТВЭЛ раквтора РБМК. Устройство твэла реактора РБМК: 1 — заглушка; 2 — таблетки диоксида урана; 3 — оболочка из циркония; 4 — пружина; 5 — втулка; 6 — наконечник.

Также ТВЭЛ включает в себя пружинную систему удержания  топливных таблеток на одном уровне, что позволяет точнее регулировать глубину погружения/выведения топлива  в активную зону. Они собраны в  кассеты шестигранной формы, каждая из которых включает в себя несколько  десятков ТВЭЛов. По каналам в каждой кассете протекает теплоноситель.

Топливная кассета  в сборе.

Активная зона реактора состоит  из сотен кассет, поставленных вертикально  и объединенных вместе металлической  оболочкой – корпусом, играющим также роль отражателем нейтронов. Среди кассет, с регулярной частотой вставлены управляющие стержни  и стержни аварийной защиты реактора, которые в случае перегрева призваны заглушить реактор.

Приведем в пример данные по реактору ВВЭР-440:

Количество топливных  кассет

349 шт

ТВЕЛов в кассете

126 шт

Диаметр ТВЕЛа

9,1 мм

Диаметр активной зоны

2880 мм

Высота активной зоны

2500 мм


Управляющие  могут перемещаться вверх и вниз погружаясь или наоборот, выходя из активной зоны, где реакция идет интенсивнее всего. Это обеспечивают мощные электромоторы, в совокупности с системой управления.Стержни аварийной защиты призваны заглушить реактор в случает нештатной ситуации, упав в активную зону и поглотив больше количество свободных нейтронов.

Каждый реактор имеет  крышку, через которую производится погрузка и выгрузка отработавших и  новых кассет.

Поверх корпуса реактора обычно устанавливается теплоизоляция. Следующим барьером идет биологическая  защита. Это как правило железобетонный бункер, вход в который закрывается шлюзовой камерой с герметичными дверьми. Биологическая защита призвана не выпустить в атмосферу радиоактивный пар и куски реактора, если все таки произойдет взрыв.

Ядерный взрыв в современных  реактора крайне мало возможен. Потому что топливо достаточно мало обогащено, и разделено на ТВЕЛы. Даже если расплавится активная зона, топливо не сможет настолько активно прореагировать. Масимум что может произойти – тепловой взрыв как на Чернобыле, когда давление в реакторе достигло таких величин, что металлический корпус просто разорвало, а крышка реактора, весом в 5000 тонн сделала прыжок с переворотом, пробив крышу реакторного отсека и выпустив пар наружу. Если бы чернобыльская АЭС была оснащена правильной биологической защитой, наподобие сегодняшнего саркофага, то катастрофа обошлась человечеству намного дешевле.

 

Принцип работы

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся  в состоянии с энергией покоя  большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если  иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, т. е. химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций — это минимум 107°К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез). Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

В процессе работы ядерного реактора из-за накопления в топливе  осколков деления изменяется его  изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·10барн). Период полураспада 135Xe T½ = 9,2 ч; выход при делении составляет 6—7%. Основная часть 135Xe образуется в результате распада 135I (T½ =  6,8 ч). При отравлении Кэф изменяется на 1—3%. Большое сечение поглощения 135Xe и наличие промежуточного изотопа 135I приводят к двум важным явлениям:

  1. К увеличению концентрации 135Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см2·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см2·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает  большое число стабильных осколков, которые различаются сечениями  поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением  сечения поглощения достигает насыщения  в течение нескольких первых суток  работы реактора. Главным образом это 149Sm, изменяющий Кэф на 1%). Концентрация осколков с малым значением сечения поглощения и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых  элементов в ядерном реакторе происходит по следующим схемам:

  1. 235U + n → 236U + n → 237U →(7 сут)→ 237Np + n → 238Np →(2,1 сут)→ 238Pu
  2. 238U + n → 239U →(23 мин)→ 239Np →(2,3 сут)→ 239Pu (+осколки) + n → 240Pu + n → 241Pu (+осколки) + n → 242Pu + n → 243Pu →(5 ч)→ 243Am + n → 244Am →(26 мин)→ 244Cm

Время между стрелками  обозначает период полураспада, «+n» обозначает поглощение нейтрона.

В начале работы реактора происходит линейное накопление 239Pu, причём тем быстрее (при фиксированном выгорании 235U), чем меньше обогащение урана. Далее концентрация 239Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238U и 239Pu. Характерное время установления равновесной концентрации 239Pu ˜ 3/Ф лет (Ф в ед. 1013 нейтронов/см2×сек). Изотопы 240Pu, 241Pu достигают равновесной концентрации только при повторном сжигании горючего в ядерном реакторе после регенерации ядерного топлива.

Выгорание ядерного топлива  характеризуют суммарной энергией, выделившейся в реакторе на 1 топлива. Эта величина составляет:

  • ˜ 10 Гвт·сут/т — реакторы на тяжёлой воде;
  • ˜ 20-30 Гвт·сут/т — реакторы на слабообогащённом уране (2—3% 235U);
  • до 100 Гвт·сут/т — реакторы на быстрых нейтронах.

Выгорание 1 Гвт·сут/т соответствует сгоранию 0,1% ядерного топлива.

По мере выгорания топлива  реактивность реактора уменьшается. Замена выгоревшего топлива производится сразу из всей активной зоны или  постепенно, оставляя в работе ТВЭЛы  разных «возрастов». Такой режим  называется непрерывной перегрузкой  топлива.

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, т. к. реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива  превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала  главным образом за счёт деления  запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3%, через 1 ч — 1%, через сутки — 0,4%, через год — 0,05%.

Отношение количества делящихся  изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 Гвт·сут/т K= 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) K= 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4-1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239Pu, для быстрых нейтронов g растёт, а а падает.

 

Управление ядерным  реактором

и вопросы безопасности

Ядерный реактор может работать с заданной мощностью в течение  длительного времени только в  том случае, если в начале работы имеет запас реактивности. Протекающие  в реакторе процессы вызывают ухудшение  размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Причём если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.

Управление ядерным реактором  упрощает тот факт, что часть нейтронов  при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.

Для управления ядерным реактором  служит система управления и защиты (СУЗ). Органы СУЗ делятся на:

  • Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;
  • Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (т. е. мощность на выходе);
  • Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.

В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.

Работа органов СУЗ заметно  упрощается для реакторов с отрицательным  температурным коэффициентом реактивности (с ростом температуры r уменьшается).

На основе информации о состоянии  реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния  реактора, либо, в определённых пределах, управление реактором производится без участия оператора.

Информация о работе Ядерный реактор