Вакуумные насосы

Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 20:48, реферат

Краткое описание

В переводе с латинского “Вакуум” означает пустоту. Философский этап развития вакуумной техники опустим, ибо он примитивен.
Началом научного этапа в развитии вакуумной техники можно считать 1643 г, когда Торричелли впервые измерил атмосферное давление. В 1672 году Отто фон Герике изобретает механический поршневой насос с водяным уплотнителем. Изучалось поведение различных систем и живых организмов в вакууме.

Содержание

Введение…………………………………………………………………….3
1. Вакуумные насосы. Общая характеристика…………………………...4
2. Объёмные вакуумные насосы (поршневые, кольцевые, ротационные)……………………………………………………………………...8
3. Молекулярные насосы…………………………………………………17
4. Пароструйные насосы………………………………………………….20
5. Насосы, основанные на принципе ионно-сорбционной откачки…...23
Список литературы……………………………………………………….27

Прикрепленные файлы: 1 файл

Вакуумные насосы.doc

— 356.50 Кб (Скачать документ)

                                     СОДЕРЖАНИЕ         

Введение…………………………………………………………………….3

1. Вакуумные насосы. Общая  характеристика…………………………...4

2. Объёмные вакуумные  насосы (поршневые, кольцевые, ротационные)……………………………………………………………………...8

3. Молекулярные насосы…………………………………………………17

4. Пароструйные насосы………………………………………………….20

5. Насосы, основанные на  принципе ионно-сорбционной откачки…...23

Список литературы……………………………………………………….27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 ВВЕДЕНИЕ

История развития вакуумной техники.

В переводе с латинского “Вакуум” означает пустоту. Философский этап развития вакуумной техники опустим, ибо он примитивен.  
     Началом научного этапа в развитии вакуумной техники можно считать 1643 г, когда Торричелли впервые измерил атмосферное давление. В 1672 году Отто фон Герике изобретает механический поршневой насос с водяным уплотнителем. Изучалось поведение различных систем и живых организмов в вакууме. 
     Наконец, в 80-х годах 19 в. Человечество шагнуло в технологический этап создания вакуумных приборов и техники. Это было связано с открытием А.Н. Лодыгиным электрической лампы накаливания с угольным электродом (1873) и открытием Т.А. Эдисоном термоэлектронной эмиссии (1883).                          Начинают изобретаться такие вакуумные насосы: вращательный (Геде, 1905), криосорбционный (Дж. Дьюар, 1906), молекулярный (Геде, 1912), диффузионный (Геде, 1913); манометры: компрессионный (Г. Мак-Леод, 1874), тепловой (М. Пирани, 1909), ионизационный (О. Бакли, 1916).  
    В СССР становление вакуумной техники началось с организации вакуумной лаборатории на ленинградском заводе “Светлана”. Началось бурной развитие электроники и новых методов физики.

  Применение вакуума в науке и технике.

 

     Области применения весьма широки. Практически ни одно технологически сложное производство не обходится без применения вакуума. 
      В электронной технике: осветительные лампы, газоразрядные, генераторные и сверхвысокочастотные приборы, телевизионные и рентгеновские трубки. 
    В производстве микросхем и приборов: нанесение тонких плёнок, ионное внедрение, плазмохимическое травление, электронолитографию. 
     В металлургии: плавка и переплав металлов в вакууме освобождает их от растворённых газов, что придаёт им высокую прочность, пластичность и вязкость. 
     Машиностроение: электроннолучевая сварка, диффузионная сварка, плазменная обработка. 
     Химическая промышленность: вакуумные сушильные аппараты, вакуумная пропитка, вакуумные фильтры. 
     Основной инструмент современной ядерной физики – ускоритель частиц – немыслим без вакуума. Поддержание почти космического вакуума требуется в установках для проведения экспериментов.

         Вакуумные насосы

  1. Общая характеристика

Все вакуумные насосы можно разделить на высоковакуумные и низковакуумные, а по физическому принципу действия – на механические, сорбционные, ионные. Среди механических насосов выделяют объёмные и молекулярные, основанные на передаче количества движения молекулам газа от движущихся поверхностей. 
     Насосы объёмного типа осуществляют откачку за счёт периодического изменения объёма рабочей камеры. Этот тип вакуумных насосов появился раньше остальных и получил широкое применение в различных конструкциях: поршневая, жидкостно-кольцевая и ротационная. 
     Среди насосов с передачей количества движения молекулам газа различают: водоструйные, эжекторные, диффузионные и молекулярные. Их характеристики можно рассчитать на основании закономерностей внутреннего трения в газах. 
    Сорбционные явления в вакууме широко используются для откачки газов из вакуумных систем. На принципе хемосорбции основана работа испарительных насосов. Физическая адсорбция и конденсация используются для откачки газов криосорбционными насосами: адсорбционными и конденсационными. 
     Направленное движение предварительно заряженных молекул газа под действием электрического поля является основой работы ионных насосов. Принцип ионной откачки совместно с сорбционным используется в конструкциях ионно-сорбционных насосов. 
     Основными параметрами любого вакуумного насоса являются: быстрота действия, предельное давление, наименьшее рабочее давление, наибольшее давление запуска и наибольшее выпускное давление.

              

          Рис. 1 Упрощенная схема вакуумной  системы.

Рассмотрим схему простейшей вакуумной системы (рис. 1), состоящую из откачиваемого объекта 1, насоса 2, и соединяющего их трубопровода. Течение газа из откачиваемого объекта в насос происходит из-за разности давлений (p1 - p2), причём p1 > p2. 
     Быстроту откачки насоса Si в произвольном сечении соединительного трубопровода можно определить как объём газа, проходящий через это сечение в единицу времени:

                                                       Si = dVi/dt.

Быстротой откачки объекта или эффективной быстротой откачки насоса называется объём газа, поступающий в единицу времени из откачиваемого объекта в трубопровод через сечение I при давлении p1:

                                                  SEff = dV1/dt                                                                        (1)

Быстрота действия насоса – это объём газа, удаляемый насосом в единицу времени через входной патрубок (сечение ближе к насосу) при давлении p2:

                                         SH = dV2/dt                                                                        (2)

Отношение эффективной быстроты откачки насоса к быстроте действия называется коэффициентом использования насоса:

                                         Ku = SEff/SH                                                                        (3)

Производительностью насоса называется поток газа, проходящий через его входное сечение. Для стационарного потока выполняется условия сплошности:

                                 Q =  p2SH = p1SEff = piSi                                                              (4)

Установим связь между тремя основными характеристиками вакуумной системы: быстротой действия насоса SH, эффективной быстротой откачки объекта SEff и проводимостью вакуумной системы между насосом и откачиваемым объектом U. Запишем следующие равенства:

                                       SH= Q/p2=U(p1-p2)/p2, 
                                               SEff =  Q/p1 = U(p1 - p2)/p1                                                                                           (5)

После несложных преобразований имеем искомую связь:

                                     1/SEff -1/SH = 1/U                                                                   (6)

Это уравнение называется основным уравнением вакуумной техники. Для анализа этого уравнения запишем его немного в другом виде:

                                             SEff = SHU/(SH + U)                                                                  (7)

Сразу же бросаются в глаза следующие факты:

  1. Если SH = U, то получаем что SEff = 0.5SH;
  2. Если U , то SEff SH;
  3. При U 0, имеем SEff 0.

Предельное давление насоса pпр - это минимальное давление, которое может обеспечить насос, работая без откачиваемого объекта. Логично заметить, что быстрота действия насоса при приближении к предельному давлению стремиться к нулю. Предельное давление большинства вакуумных насосов определяется газовыделением материалов, из которых изготовлен насос, перетеканием газов через зазоры и другими явлениями, возникающими в процессе откачки. 
     Наименьшее рабочее давление вакуумного насоса pм - это минимальное давление, при котором давление длительное время сохраняет номинальную быстроту действия. Наименьшее рабочее давление примерно не порядок выше предельного давления. Использование насоса для работы при давлениях между предельным и наименьшим рабочим экономически не выгодно из-за ухудшения его удельных характеристик. 
     Наибольшее рабочее давление вакуумного насоса pб - это максимальное давление, при котором насос длительное время сохраняет номинальную быстроту действия. В рабочем диапазоне от наименьшего о наибольшего рабочего давления обеспечивается эффективное применение насоса для откачивания вакуумных установок. Рабочие диапазоны давлений вакуумных насосов в основном определяются их принципом действия. 
     Давление запуска вакуумного насоса pз - максимальное давление во входном сечении насоса, при котором он может начать работу. Давление запуска обычно заметно превышает наибольшее рабочее давление. Для некоторых типов насосов, к примеру, магниторазрядных, это различие может достигать 2-3 порядков

                

      Рис.2  Зависимость быстроты действия от входного давления.

Наибольшее выпускное давление pВ - максимальное давление в выходном сечении насосы, при котором он может осуществлять откачку. Этот параметр не используется для некоторых типов сорбционных насосов, поглощающих газ в объёме насоса. 
     Параметры вакуумных насосов показаны на основной характеристике вакуумного насоса – зависимости быстроты действия от его входного давления (рис. 2). Экспериментальное определение основной характеристики вакуумного насоса может осуществляться двумя методами: стационарным методом постоянного давления и квазистационарным методом постоянного объёма.

2. Объёмные вакуумные насосы (поршневые, кольцевые, ротационные)

В поршневых вакуумных насосах откачка осуществляется за счет периодического изменения объема цилиндра. Цилиндры могут быть простого и двойного действия с водяным или воздушным охлаждением. Скорость движения поршня обычно не превышает 1 м/с. Обычные поршневые насосы с самодействующими клапанами имеют предельное давление 4.103 - 1.104 Па. Насосы с золотниковым распределением имеют более низкое предельное давление. 3.102 Па для одноступенчатых и 10 Па для двухступенчатых конструкций. Улучшение предельного давления достигается перепуском газа из мертвого пространства в конце хода поршня во вторую полость цилиндра, в которой заканчивается процесс всасывания. Быстрота действия современных поршневых насосов составляет 10-4000 л/с. Насосы обычно начинают работать от атмосферного давления. 
     Недостатком поршневых насосов является неравномерность процесса откачки, неполная уравновешенность, большие потери на трение [~200 Вт/(л/с)] и большая удельная масса (10-20 кг/(л/с)).

Жидкостно-кольцевые насосы или насосы с жидкостным поршнем (рис. 3) имеют в цилиндрическом корпусе / эксцентрично расположенное рабочее колесо 2 с неподвижно закрепленными лопатками. Находящаяся внутри корпуса жидкость во время вращения под действием центробежных сил прижимается к стенкам корпуса и образует жидкостное кольцо 4. Между жидкостным кольцом и лопатками насоса образуются отдельные ячейки неодинакового размера. В начале их объем увеличивается, и газ через всасывающее отверстие 3 в торцевой крышке поступает в насос. Затем объем ячеек уменьшается, и сжатый газ через выхлопное отверстие 5 удаляется из насоса. 
     В качестве рабочей жидкости для откачки смеси воздуха с водяным паром используется вода, для откачки хлора - концентрированная серная кислота и т. д. По конструкции и условиям эксплуатации эти насосы проще поршневых, так как не имеют клапанов и распределительных устройств. 
     Предельное давление таких насосов определяется давлением насыщенных паров рабочей жидкости. Водокольцевые насосы имеют предельное давление (2-3).103 Па. Насосы могут работать от атмосферного давления. В компрессорном режиме обеспечивают давление до 2.105 Па. Быстрота действия лежит в пределах от 25 до 500 л/с. 
     Недостатком насоса является довольно большой удельный расход мощности (~200 Вт/(л/с)) из-за необходимости перемещения жидкости, находящейся в насосе. Удельная масса насосов около 10 кг/(л/с).

                               

                          Рис. 3. Жидкостно-кольцевой насос.

Ротационные пластинчатые насосы (рис. 4) содержат цилиндрический корпус 7 с впускным 4 и выхлопным 3 патрубками и эксцентрично расположенный ротор 6, в пазах- которого установлены пластины 5. Под действием центробежной силы пластины прижимаются к корпусу, обеспечивая изменение объема рабочей камеры насоса. Насосы с малой быстротой действия (~1 л/с) изготовляются по схеме рис. 4а и работают в масляной ванне, обеспечивающей герметизацию соединений насоса и снижение потерь на трение. Для предотвращения заполнения маслом рабочей камеры служит клапан 2. Начальное прижатие пластин к поверхности статора осуществляется пружиной 1. 
     Насосы с быстротой откачки до 103 л/с выполняются по схеме рис. 4б с большим числом пластин. В этих насосах нет масляной ванны, а для уменьшения потерь на трение используются беговые кольца 5, которые приводятся во вращение пластинами. Отверстия в беговых кольцах обеспечивают прохождение откачиваемого газа. В некоторых конструкциях, имеющих пластины из антифрикционных материалов, можно обойтись без беговых колец. 
     Предельное давление таких насосов определяется кроме газовыделения материалов насоса объемом вредного пространства и давлением насыщенных паров масла.

     

              Рис. 4. Ротационные пластинчатые насосы.  

 Вредное пространство насоса  обозначено на рис. 5 буквой В. В пластинчато-роторных насосах объем вредного пространства частично заполняется рабочей жидкостью. В этих насосах в корпусе насоса из объема вредного пространства делается перепускной канал в одну из рабочих камер, не соединяющихся с откачиваемым объектом. 
     При откачке от атмосферного давления без учета давления насыщенных паров рабочей жидкости предельные давления насосов составляют: 1 Па - для .схемы рис. 3а и 2.103 Па - для схемы рис. 3б. 
     Для уменьшения влияния объема вредного пространства на предельное давление пластинчато-роторных насосов их часто делают двухступенчатыми. В этом случае предельное давление снижается до 103 Па. 
     Удельная масса таких насосов от 10 до 30 кг/(л/с), удельный расход мощности от 0.1 до 0.3 кВт/(л/с), причем меньшие значения имеют многопластинчатые роторные насосы.

                                 

                                            Рис. 5.

Ротационные насосы с катящимся ротором бывают в основном двух видов: пластинчато-статорный насос (рис. 6а) и золотниковый насос (рис. 6б). 
     Пластинчато-статорный насос составляют следующие основные элементы: корпус ), эксцентричный ротор 2, выпускной патрубок 3, пластина 4, пружина 5, входной патрубок 6". Рабочее пространство насоса образуется между эксцентрично установленным ротором и корпусом насоса. При вращении по часовой стрелке за первый оборот ротора газ всасывается из откачиваемого объекта, а за второй оборот производится сжатие и выхлоп газа. Пластина под воздействием пружины герметично разделяет области всасывания и сжатия откачиваемого газа. 
     Золотниковый насос состоит из корпуса 1, эксцентрично установленного ротора 2, золотника 3, выпускного патрубка 4, обратного клапана 5, шарнира 6 и входного патрубка 7. Газ из откачиваемого объекта через входной патрубок и отверстия в золотнике поступает в камеру всасывания А, увеличивающуюся при вращении ротора по часовой стрелке. В это же время объем камеры В уменьшается и находящийся в ней газ сжимается и выталкивается через выхлопной патрубок. 
     Пластинчато-статорный и золотниковый насосы работают в масляной ванне, так же как и пластинчато-роторный насос. Характеристики этих насосов примерно одинаковы, но золотниковые насосы изготовляются на большие быстроты откачки - до 100 л/с. 
     В качестве рабочей жидкости насосов обычно применяются вакуумные масла, полученные из обычных смазочных материалов отгонкой самых легких и самых тяжелых фракций. Температура вспышки масел должна быть не ниже 200°С, что характеризует отсутствие в масле легкоокисляющихся фракций.

Информация о работе Вакуумные насосы