Автор работы: Пользователь скрыл имя, 24 Июля 2013 в 02:20, лекция
Процесс намагничивания трёхфазных трансформаторов зависит от типа магнитной системы и схемы соединения обмоток трансформатора.
Рассмотрим трансформатор с независимой магнитной системой.
Для трёхфазных трансформаторов возможно 12 групп соединения. Стандартизованными являются 2 группы – Y/Y–0, Y/Δ–11. Трансформаторы с одинаковыми схемами соединения обмоток ВН (высокого напряжения) и НН (низкого напряжения) образуют только чётные группы, с разными – только нечётные. Покажем примеры определения групп соединения с помощью построения векторных диаграмм (рис. 2.38 – 2.40).
Рис. 2.38. Пример №1 определения группы соединения
Рис. 2.39. Пример №2 определения группы соединения
Рис. 2.40. Пример №3 определения группы соединения
Процесс намагничивания трёхфазных трансформаторов зависит от типа магнитной системы и схемы соединения обмоток трансформатора.
Рис. 2.41. Трёхфазная трансформаторная группа
Если на первичную обмотку подаётся трёхфазное синусоидальное напряжение
,
то ЭДС и поток также изменяются во времени по синусоидальному закону (см. раздел 2.4):
;
.
Как было доказано выше (см. раздел 2.4), при насыщении магнитной системы, при синусоидальном потоке, ток х.х. изменяется во времени несинусоидально, а, следовательно, кривую тока можно разложить в гармонический ряд, который содержит нечётные гармоники:
.
Наиболее выражена из высших гармоник – третья, поэтому учтём только её:
.
Первые гармоники тока х.х. трёхфазной обмотки имеют сдвиг во времени на :
.
Первые гармоники тока холостого хода трёхфазной обмотки:
. (2.109)
Таким образом, третьи гармоники каждой фазы и гармоники, кратные трём, в каждый момент времени будут совпадать по фазе (рис. 2.42), и поэтому они выпадают из кривой тока холостого хода, и кривая тока холостого хода будет приближаться к синусоиде.
Но при
насыщении для получения
Рис. 2.42. Вектора первых и третьих
гармоник тока холостого хода
Кривая потока будет иметь уплощённую форму, и кроме основной гармоники, из кривой потока можно выделить высшие гармоники, самая сильная из которых – третья (рис. 1.43). Фазные ЭДС и напряжения также несинусоидальны, и кроме основной гармоники содержат высшие. Частота третьей гармоники ЭДС:
и для промышленной частоты , .
Рис. 2.43. Кривые тока холостого хода и потока
Фазная ЭДС из-за влияния третьей гармоники увеличивается на 45 … 60%. Это явление нежелательное и опасное для потребителей. ГОСТом не допускается соединение по схеме Y/Y в трансформаторах с независимой магнитной системой. Следует отметить, что кривые линейных ЭДС не искажаются, т.к. в разности двух фазных ЭДС третьи гармоники исчезают.
Рис. 2.44. Стержневой трёхфазный трансформатор
Аналогично, как и в случае с независимой магнитной системой, третьи гармоники тока выпадают из кривой тока х.х., и появляются третьи гармоники потока (рис. 2.45).
Рис. 2.45. Третьи гармоники тока
холостого хода
Третьи гармоники потока по замкнутому пути в сердечнике замыкаться не могут, так как в каждый момент времени имеют одинаковое направление. Поэтому они замыкаются от одного ярма к другому через трансформаторное масло, воздух, крепёжные детали и стенки бака, что приводит к уменьшению величин третьих гармоники потока, и искажение фазных ЭДС будет незначительным. Но замыкание потока через крепёжные детали и стенки бака вызывает добавочные потери на вихревые токи, что приводит к уменьшению КПД.
Рис. 2.46. Схема соединения Y0 /Y
Третьи гармоники тока замыкаются по нулевому проводу, при этом ток холостого хода в каждой фазе содержит третьи гармоники тока. А поскольку ток является несинусоидаильной функцией времени, то поток изменяется во времени синусоидаильно, и процесс намагничивания происходит без особенностей.
Рис. 2.47. Схема соединения Δ/Y
Так как третьи гармоники тока холостого хода могут замыкаться по контуру треугольника, то они не выпадают из кривой тока холостого хода, а, значит, не появляются третьи гармоники потока, и не наблюдается искажения фазных ЭДС. Процесс намагничивания происходит без особенностей.
Рис. 2.48. Схема соединения Y/ Δ
Третьи гармоники тока х.х. выпадают из кривой тока х.х., появляются третьи гармоники потока Ф (3), которые наводят ЭДС третьей гармоники в первичной и вторичной обмотках: е1(3), е2(3) .
Под действием ЭДС е2(3) во вторичной обмотке будет протекать ток i2(3). Создаваемые этим током третьи гармоники потока вторичной обмотки Ф2(3) будут почти полностью компенсировать потоки Ф (3). Искажения фазных ЭДС и напряжений практически не будет: они синусоидальны. Векторная диаграмма потоков, ЭДС и токов третьей гармоники представлена на рис. 2.49.
Рис. 2.49. Диаграмма ЭДС, потоков и токов (третьи гармоники)
Чтобы избежать неблагополучных явлений при намагничивании сердечника трансформатора, одну из обмоток рекомендуется соединять в треугольник.