Свет. Основные светотехнические величины и единицы

Автор работы: Пользователь скрыл имя, 16 Октября 2012 в 12:40, курсовая работа

Краткое описание

В курсовой работе изучение вопроса о свете начинается с рассмотрения физики явления. Предварительно читатель знакомится с волновыми явлениями вообще. Далее, через краткий показ некоторых наблюдений человека за свойствами света, делается вывод об электромагнитной природе света, частном случае волновых процессов; в соответствии с последовательностью научных открытий в области света.
Затем, как частный случай электромагнитных волн, выделяется и рассматривается видимое (оптическое) излучение: основные законы геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), а также приводятся основные светотехнические величины.
В качестве дополнительных глав приводятся: глава о строении зрительного аппарата и глава о световых квантах (фотонах), уточняющая учение о природе света.

Содержание

Аннотация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава 1. О волновых явлениях . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1. Волновые явления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2. Характеристики волны . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3. Классификации волн . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4. Происхождение волн . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5. Общие свойства волн . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава 2. Исследования природы света . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1. Общая характеристика световых явлений . . . . . . . . . . . . . . . . . . . . . .
2.1.1. Разнообразные действия света . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2. Особенности света, выявляющие его природу . . . . . . . . . . . . .
2.1.3. Краткие сведения из истории оптики . . . . . . . . . . . . . . . . . . . .
Глава 3. Электромагнитные волны . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1. Понятие явления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2. Характеристики электромагнитного излучения . . . . . . . . . . . . . . . . .
3.3. Шкала электромагнитных волн . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава 4. Видимое (оптическое) излучение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Свет и цвет. Дисперсия света . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1. Состояние вопроса о цвете тел до исследований
Ньютона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2. Открытие Ньютоном дисперсии света . . . . . . . . . . . . . . . . . . . .
4.2. Дифракция света . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3. Интерференция света . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава 5. Геометрическая оптика . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1. Основные законы геометрической оптики . . . . . . . . . . . . . . . . . . . . .
5.2. Светотехнические величины . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава 6 (дополнительная). Глаз . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1. Эволюция глаза . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2. Строение глаза человека . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1. Внешнее строение глаза человека . . . . . . . . . . . . . . . . . . . . . . .
6.2.2. Внутреннее строение глаза человека . . . . . . . . . . . . . . . . . . . . .
6.2.3. Светопреломляющий аппарат . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.4. Аккомодационный аппарат . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.5. Рецепторный аппарат . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Глава 7 (дополнительная). Фотоны . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Список использованных источников . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Прикрепленные файлы: 1 файл

курсовая работа. СВЕТ. ОСНОВНЫЕ СВЕТОТЕХНИЧЕСКИЕ ВЕЛИЧИНЫ И ЕДИНИЦЫ.doc

— 5.57 Мб (Скачать документ)

Линия, соединяющая оба полюса глазного яблока, называется наружной осью глазного яблока. Расстояние между передним и задним полюсами глазного яблока является его наибольшим размером и  равно примерно 24 мм.

Другой осью в глазном яблоке является внутренняя ось – она соединяет точку внутренней поверхности роговицы, соответствующую её переднему полюсу, с точкой на сетчатке, соответствующей заднему полюсу глазного яблока, её размер в среднем составляет 21,5 мм.

При наличии более длинной внутренней оси лучи света после преломления в глазном яблоке собираются в фокусе впереди сетчатки. При этом хорошее зрение предметов возможно только на близком расстоянии – близорукость, миопия.

Если внутренняя ось глазного яблока относительно короткая, то лучи света  после преломления собираются в  фокусе позади сетчатки. В этом случае видение вдаль лучше, чем вблизи, – дальнозоркость, гиперметропия.

Наибольший поперечный размер глазного яблока у человека в среднем равен 23,6 мм, а вертикальный – 23,3 мм. Преломляющая сила оптической системы глаза при покое аккомодации (зависит от радиуса кривизны преломляющих поверхностей (роговица, хрусталик – передняя и задняя поверхности обоих, всего 4) и от отстояния их друг от друга) составляет в среднем 59,92 D. Для рефракции глаза имеет значение длина оси глаза, т.е. расстояние от роговицы до жёлтого пятна; оно составляет в среднем 25,3 мм. Поэтому рефракция глаза зависит от соотношения между преломляющей силой и длиной оси, что определяет положение главного фокуса по отношению к сетчатке и характеризует оптическую установку глаза. Различают три основные рефракции глаза: «нормальную» рефракцию или Эмметропию (фокус на сетчатке), Дальнозоркость (за сетчаткой) и Близорукость (фокус спереди кнаружи).

Выделяют также зрительную ось глазного яблока, которая простирается от его переднего полюса до центральной ямки сетчатки.

Линия, соединяющая точки наибольшей окружности глазного яблока во фронтальной  плоскости, называется экватором. Он находится  на 10–12 мм позади края роговицы. Линии, проведённые перпендикулярно экватору и соединяющие на поверхности яблока оба его полюса, носят название меридианов. Вертикальный и горизонтальный меридианы делят глазное яблоко на отдельные квадранты.

 

 

6.2.2. Внутреннее строение глаза человека

Глазное яблоко состоит из оболочек, которые окружают внутреннее ядро глаза, представляющее его прозрачное содержимое – стекловидное тело, хрусталик, водянистая влага в передней и задней камерах.

Ядро глазного яблока окружают три  оболочки: наружная, средняя и внутренняя.

  1. Наружная – очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi),  
    к которой прикрепляются наружные мышцы глазного яблока, выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части – роговицы, и задней непрозрачной части белесоватого цвета – склеры.
  2. Средняя, или сосудистая, оболочка глазного яблока (tunica vasculosa bulbi), играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой, ресничным телом и собственно сосудистой оболочкой. В центре радужки имеется круглое отверстие – зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется (в зависимости от интенсивности светового потока: при ярком свете он у́же, при слабом и в темноте – шире) в результате взаимодействия гладких мышечных волокон – сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами; при ряде заболеваний возникает расширение зрачка – мидриаз, или сужение – миоз). Радужка содержит различное количество пигмента, от которого зависит её окраска – «цвет глаз».
  3. Внутренняя, или сетчатая, оболочка глазного яблока (tunica interna bulbi), – сетчатка – это рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации в центральную нервную систему.

 

 

 

Рис. 6.2. Внутреннее строение глаза человека

 

 

1. Задняя камера 
2. Зубчатый край 
3. Ресничная (аккомодационная) мышца 
4. Ресничный (цилиарный) поясок 
5. Шлеммов канал 
6. Зрачок 
7. Передняя камера 
8. Роговица 
9. Радужная оболочка 
10. Кора хрусталика 
11. Ядро хрусталика 
12. Цилиарный отросток 
13. Конъюнктива 
14. Нижняя косая мышца 
15. Нижняя прямая мышца 
16. Медиальная прямая мышца 
17. Артерии и вены сетчатки 
18. Слепое пятно 
19. Твердая мозговая оболочка 
20. Центральная артерия сетчатки 
21. Центральная вена сетчатки 
22. Зрительный нерв 
23. Вортикозная вена 
24. Влагалище глазного яблока 
25. Жёлтое пятно 
26. Центральная ямка 
27. Склера 
28. Сосудистая оболочка глаза 
29. Верхняя прямая мышца 
30. Сетчатка

 

 

С функциональной точки зрения оболочки глаза и её производные подразделяют на три аппарата: рефракционный (светопреломляющий) и аккомодационный (приспособительный), формирующие оптическую систему глаза, и сенсорный (рецепторный) аппарат.

 

 

6.2.3. Светопреломляющий аппарат

Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение внешнего мира, включает в себя роговицу (диаметр роговицы – около 12 мм, средний радиус кривизны – 8 мм), камерную влагу – жидкости передней и задней камер глаза (Периферия передней камеры глаза, т.наз. угол передней камеры (область радужно-роговичного угла передней камеры), имеет важное значение в циркуляции внутриглазной жидкости), хрусталик, а также стекловидное тело, позади которого лежит сетчатка, воспринимающая свет.

 

 

6.2.4. Аккомодационный  аппарат

Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре – зрачком, – и ресничное тело с ресничным пояском хрусталика.

Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. Так же в фокусировке изображения принимает участие и сам глаз в целом. Если фокус находится за пределами сетчатки – глаз (за счёт глазодвигательных мышц) немного вытягивается (чтобы видеть вблизи). И наоборот округляется, при рассматривании далёких предметов.

Зрачок представляет собой отверстие переменного размера в радужке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку, уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света.

 

 

6.2.5. Рецепторный  аппарат

Рецепторный аппарат глаза представлен  зрительной частью сетчатки, содержащей фоторецепторные клетки (высокодифференцированные нервные элементы), а также тела и аксоны нейронов (проводящие нервное раздражение клетки и нервные волокна), расположенных поверх сетчатки и соединяющиеся в слепом пятне в зрительный нерв.

Сетчатка также имеет слоистое строение. Устройство сетчатой оболочки чрезвычайно сложное. Микроскопически в ней выделяют 10 слоёв. Самый наружный слой является свето-(цвето-)воспринимающим, он обращен к сосудистой оболочке (вовнутрь) и состоит из нейроэпителиальных клеток – палочек и колбочек, воспринимающих свет и цвета (у человека световоспринимающая поверхность сетчатки очень мала – 0,4…0,05 мм, следующие слои образованы проводящими нервное раздражение клетками и нервными волокнами). Свет входит в глаз через (светопроводящие и светопреломляющие среды) роговицу, проходит последовательно сквозь жидкость передней (и задней) камеры, хрусталик и стекловидное тело, пройдя через всю толщу сетчатки, попадает на отростки светочувствительных клеток – палочек и колбочек. В них протекают фотохимические процессы, обеспечивающие цветовое зрение.

 

 

Цветовое зрение. У приматов (в том числе и человека) мутация вызвала появление дополнительного, третьего типа колбочек – цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях. Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» – плодов, цветов, листьев.

В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко-чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

 

 

Рис. 6.3. Нормализованные графики светочувствительности колбочек человеческого глаза S, M, L.

Пунктиром показана сумеречная, «чёрно-белая» восприимчивость палочек.

 

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Еще в 1970-х годах было показано, что распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом, что было подтверждено более детальными исследованиями в начале XXI века. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение  всех трёх элементов, соответствующее  средневзвешенному дневному свету, также вызывает ощущение белого цвета.

 

Тип колбочек

Обозначение

Воспринимаемые длины  волн

Максимум чувствительности

S

β

400–500 нм

420–440 нм

M

γ

450–630 нм

534–555 нм

L

ρ

500–700 нм

564–580 нм


 

Свет с разной длиной волны по-разному стимулирует  разные типы колбочек. Например, желто-зеленый свет в равной степени стимулирует колбочки L и M-типов, но слабее стимулирует колбочки S-типа. Красный свет стимулирует колбочки L-типа намного сильнее, чем колбочки M-типа, а S-типа не стимулирует почти совсем; зелено-голубой свет стимулирует рецепторы M-типа сильнее, чем L-типа, а рецепторы S-типа – ещё немного сильнее; свет с этой длиной волны наиболее сильно стимулирует также палочки. Фиолетовый свет стимулирует почти исключительно колбочки S-типа. Мозг воспринимает комбинированную информацию от разных рецепторов, что обеспечивает различное восприятие света с разной длиной волны.

За цветовое зрение человека и обезьян отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение. В том случае, если у человека два белка, кодируемые разными генами, оказываются слишком схожи или один из белков не синтезируется, развивается дальтонизм.

Чувствительный к красному свету опсин кодируется у человека геном OPN1LW.

Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.

Ген OPN1LW, который кодирует пигмент, отвечающий за воcприятие красного цвета, высоко полиморфен (в недавней работе Виррелли и Тишкова было найдено 85 аллелей в выборке из 256 человек), и около 10 % женщин, имеющих два разных аллеля этого гена, фактически имеют дополнительный тип цветовых рецепторов и некоторую степень четырехкомпонентного цветового зрения. Вариации гена OPN1MW, который кодирует «желто-зеленый» пигмент, встречаются редко и не влияют на спектральную чувствительность рецепторов.

Информация о работе Свет. Основные светотехнические величины и единицы