Сверхпроводимость. Изотопический эффект и его применение

Автор работы: Пользователь скрыл имя, 14 Сентября 2013 в 17:08, реферат

Краткое описание

Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tс, и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца ( эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,22К Hg практически теряет сопротивление.

Содержание

Введение.__________________________________________________3
I.Сверхпроводимость.________________________________________4
II.Изотопический эффект._____________________________________7
Заключение._______________________________________________11
Список литературы._________________________________________12

Прикрепленные файлы: 1 файл

физика реферат.docx

— 56.80 Кб (Скачать документ)

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАТАРСТАН                                 Альметьевский государственный нефтяной институт

                         

Кафедра физики

 

 

 

 

РЕФЕРАТ

на тему «Сверхпроводимость.

Изотопический эффект и  его применение»

                                                 Выполнил студент: группа 31-91,

                                                                      Хазиева Г.М

                                                                      Преподаватель: Мухетдинова З.З.

                                                 

                                                                   

 

                                  Альметьевск 2013 г.

СОДЕРЖАНИЕ

               

                      Введение.__________________________________________________3

I.Сверхпроводимость.________________________________________4

   II.Изотопический эффект._____________________________________7

             Заключение._______________________________________________11

                  Список литературы._________________________________________12

 

ВВЕДЕНИЕ

Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tс, и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца ( эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,22К Hg практически теряет сопротивление. 

I. Сверхпроводимость.

Открытые два года обратно железосодержащие сверхпроводники возродили интерес  к одной из самых интригующих  физических проблем современности  — построению теории высокотемпературной  сверхпроводимости. Главной загадкой на пути решения этой задачи остаются неизвестные и не понятые до сих  пор процессы внутри вещества, которые  ответственны за его сверхпроводящее  состояние и которые позволяют  ему иметь высокую критическую  температуру (температуру перехода из нормального состояния в сверхпроводящее). Японские ученые в журнале Physical Review Letters опубликовали экспериментальную работу, результаты которой могут внести некоторую определенность в понимание этих внутренних механизмов сверхпроводимости с высокой критической температурой.

Кристаллическая решетка BaFe2As2.

Сверхпроводимость характеризуется  отсутствием электрического сопротивления  и идеальным диамагнетизмом (абсолютным непроникновением магнитного поля внутрь материала). Она возникает у веществ, которые имеют температуру ниже определенного, характерного только для них значения. Такая температура называется критической (Tc).

Хотя сверхпроводимость была открыта  голландским ученым Хейке Камерлинг-Оннесом вдобавок в начале прошлого века (в 1911 году), объяснено это явление было лишь спустя примерно 50 лет (в 1957 году). Создателями теории сверхпроводимости принято считать Джона Бардина, Леона Купера и Джона Шриффера. Они установили, что вещество становится сверхпроводящим благодаря объединению электронов проводимости в пары (именуемые куперовскими) и их дальнейшей синхронизации. Иными словами, все электроны ведут себя как единое неделимое (ни один из электронов не стремится в этом состоянии показать свою «индивидуальность») и благодаря этому обтекают без какого-либо сопротивления кристаллическую решетку вещества.

Появление куперовских пар обусловлено сложным взаимодействием ионов кристаллической решетки и электронов. Электроны обмениваются безмассовыми «почти» частицами (квазичастицами) фононами — квантами колебательного движения ионов. «Почти» — потому что фононы не могут существовать в свободном состоянии, их жизнь ограничена кристаллической решеткой. В результате обмена квазичастицами промеж электронами появляется притяжение, что в свою очередь приводит к образованию куперовских пар. Описанный процесс формирования куперовских пар получил наименование электрон-фононного взаимодействия (механизма). Именно этот механизм и составляет основу теории сверхпроводимости, или теории БКШ, названной так по первым буквам фамилий ее авторов.

Надо сказать, что теория БКШ, как  и любая другая физическая теория, не возникла спонтанным образом. Она стала итогом последовательных экспериментальных и теоретических исследований различных ученых. Среди этого многообразия особо стоит выделить публикации английского физика Герберта Фрлиха, который в 1950 году первым указал на существенную роль влияния ионов на электроны в возникновении сверхпроводимости. Из своей идеи профессор смог вывести заключение о том, что критическая температура в семействе изотопов данного сверхпроводника должна быть назад пропорциональна квадратному корню массы иона М (молекулярной массы), то есть Tc ~ M–α (значок «~» обозначает пропорциональность), где α = 0,5. Проще говоря, чем больше молекулярная масса сверхпроводящего вещества, тем меньше его критическая температура. Такая зависимость получила наименование «изотопический эффект», или «изотоп-эффект». В том же году Эммануэль Максвелл обнаружил изотопический эффект в изотопах ртути, что явилось веским доказательством правильности гипотезы Фрлиха. Позже изотоп-эффект был открыт и у других сверхпроводников (см. таблицу 1).

 

II. Изотопический эффект .

Изотопический эффект- зависимость сверхпроводящего металла от его изотопного состава: Тквозрастает при уменьшении ср. атомной массы М изотопа. Для ряда металлов (Hg, Sn, Tl) выполняется (приблизительно) соотношениеТк.М1/2=const, но для других металлов иной. Впервые изотопический эффект наблюдался в 1950.Было установлено, что у изотопа 198Hg Тк=4,177 К, а у чистой ртути с естественным изотопным составом (М=200,6) Tк=4,154 К. Исследования показали также, что одновременно с Тк изменяется критическое магнитное поле Нk,0 (при Т''0), но отношениеНk,0/ТК для разных изотопов данного сверхпроводящего металла остаётся постоянным. И. э. свидетельствует, что сверхпроводимость связана с массой частиц, образующих кристаллическую. решётку, и обусловлена взаимодействием электронов с фононами (колебаниями решётки).

Когда в 1986-87 годах была обнаружена высокотемпературная сверхпроводимость  в купратных (медьсодержащих) соединениях La0,89Sr0,11CuO4 (Tc = 40 К) и YBa2Cu3O7 (Tc = 92 К) и другие, ученым стало ясно, что ставшая уже классической теория БКШ не в состоянии ее объяснить. БКШ-теория не допускает существования столь высокой критической температуры в веществах с такой силой электрон-фононного взаимодействия. На то, что не фононы заставляют объединяться электроны в высокотемпературных сверхпроводниках (ВТСП), указывало и неимение у этих ВТСП изотоп-эффекта по кислороду — элементу, который наряду с медью присутствует во всех открытых впоследствии сверхпроводниках с высокой Tc. Замещение традиционного кислорода 16О другими его изотопами чрезвычайно слабо изменяло критическую температуру.

С тех пор изотоп-эффект стал рассматриваться  как необыкновенный тест на причастность фононов к появлению сверхпроводимости. Если α равно или близ к 0,5, то в данном материале куперовские пары (сверхпроводимость) возникают за счет электрон-фононного притяжения. В противном случае сверхпроводимость вызвана иным механизмом.

Чтобы выявить наличие или неимение изотоп-эффекта в сверхпроводнике, надобно определить показатель степени α в зависимости Tc ~ M–α. Рассчитать α из экспериментальных данных не сложно. Так как Tc ~ M–α, то герб равенства промеж критической температурой и массой иона возникнет, если переписать эту зависимость в таком виде: Tc = const·M–α (const — это постоянная величина, константа, которая от Tc и M не зависит). Продифференцировав Tc по M и вспомнив определение производной функции, получим формулу:

,

где ΔM и ΔT соответствуют разности масс ионов и разности критических  температур, возникающей при замещении иона его изотопом. Из этой формулы, опираясь на экспериментальные данные, ученые и определяют α, то есть наличие или неимение изотопического эффекта.

Конечно, изотоп-эффект не дает прямого  ответа на важнейший вопрос высокотемпературной  сверхпроводимости: что заставляет электроны в ВТСП объединяться в  пары? Однако он играет важную роль в  распутывании этой загадки, в частности  позволяет определить ступень причастности фононов к возникновению куперовских пар.

С открытием в 2008 году железосодержащих ВТСП поиски причин возникновения высокотемпературной  сверхпроводимости возобновились  с новой силой. И, конечно, в первую очередь ученых заинтересовала величина вклада электрон-фононного взаимодействия в сверхпроводимость «железных» сверхпроводников. Будет ли этот вклад  отличен от нуля или он так же пренебрежительно мал, как и в  купратных ВТСП? Один из возможных способов решения данной проблемы связан с обнаружением (или необнаружением) изотопического эффекта по железу — веществу, объединяющие «железные» сверхпроводники в один класс.

Впервые изотоп-эффект в железосодержащих ВТСП, а точнее, в поликристаллических  соединениях SmFeAsO1–xFx (х = 0,15) с Tc = 40 К и Ba1–xKxFe2As2 (х = 0,4) с Tc = 37 К был открыт группой китайских ученых в 2009 году. Заменяя атомы природного (наиболее распространенного) железа 56Fe изотопом 54Fe, исследователи выяснили, что показатель степени α находится вблизи от 0,5 и предположительно равен 0,35. Из результатов эксперимента ученые заключили, что частично (частично — потому что α равно не 0,5, а чуть меньше – 0,35) куперовские пары формируются под действием электрон-фононного взаимодействия, но бесспорно, что количественно этот процесс классической теорией БКШ не описать.

История с изотопическим эффектом в железосодержащих сверхпроводниках получила свое продолжение в недавно  опубликованной в журнале Physical Review Letters статье японских ученых Inverse Iron Isotope Effect on the Transition Temperature of the (Ba,K)Fe2As2 Superconductor (доступной также здесь). Они сосредоточили свое внимание на изотоп-эффекте по железу в поликристаллах Ba1–xKxFe2As2 — сверхпроводника, в котором тот же эффект по железу исследовали их китайские коллеги.

Чтобы достичь минимальной грехи  в итоговых результатах, авторы статьи приготовили семь наборов из сверхпроводящего Ba1–xKxFe2As2 по два образца в каждом. Условия их производства были совершенно идентичными. разность заключалась лишь в химическом составе, а точнее, в использовании при изготовлении сверхпроводника наряду с обычным железом (56Fe, в таблице оно обозначено как nFe) двух его других стабильных изотопов: 54Fe и 57Fe. предположим, набор S2, как видно из таблицы, представляет собой два одинаково приготовленных поликристалла Ba1–xKxFe2As2, в состав которых входят изотопы железа-54 и 57 соответственно.

Таблица 2. Критическая температура, сдвиг критической температуры  и показатель степени в изотопическом  эффекте по железу в зависимости  от изотопа Fe, входящего в состав сверхпроводящих поликристаллов Ba1–xKxFe2As2

Из полученных данных (см. таблицу 2) ученые рассчитали показатель степени α и обнаружили, что, во-первых, он отличается от нуля и в среднем равен –0,18. Во-вторых, и это самое необычное, он имеет отрицательный герб, то есть чем тяжелее ион железа, входящий в сверхпроводник, тем выше критическая температура. В подавляющем большинстве сверхпроводники, если и обладают изотоп-эффектом, то для них α — положительное число.

Основные области  применения изотопных измерений  для криминалистических целей, выявления  фактов фальсификации, незаконного  использования лекарственных, наркотических, допинговых средств таковы: - подделка регламентируемых продуктов, таких  как пищевые продукты, напитки, ароматизаторы, эфирные масла и т.д. - Определение места происхождения различных продуктов, в том числе, наркотиков, взрывчатых веществ, лекарственных препаратов, алкогольных и безалкогольных напитков, нефтей, нефтепродуктов и т.д. - Дифференциация происхождения продуктов - из натурального или синтетического сырья - Допинговый контроль - определение природы биомолекул при их противозаконном использовании в качестве допинговых средств спортсменами или "спортивными" животными (лошади, собаки) - Защита патентного права синтетических материалов или коммерческих химических смесей - Преднамеренная маркировка небольшим количеством стабильных изотопов с целью введения метки товара для защиты авторского права производителя. 

ВЫВОД

 Делая вывод,выяснилось что фононы нельзя скидывать со счетов в теории сверхпроводимости «железных» ВТСП. Однако отрицательная величина α говорит о том, что механизм электрон-фононного взаимодействия, возможно, более трудный, чем описываемый в теории БКШ. На основании того, что α в среднем равно –0,18, а не 0,5, авторы статьи делают следующее догадка. По их мнению, в железосодержащих ВТСП реализуется экзотический механизм объединения куперовских пар: смесь «более сложного» электрон-фононного и обменного взаимодействий. В одной из прошлых новостей «Элементы» уже писали вероятном обменном механизме формирования пар электронов. Поэтому лишь напомним, что обменное взаимодействие частиц представляет собой квантовый (связанный с принципом запрета Паули) аналог электростатического взаимодействия.

Таким образом, если теоретикам удастся  объяснить такой аномальный изотоп-эффект в «железных» ВТСП в рамках высказанной  авторами обсуждаемой статьи гипотезы о смешанном взаимодействии электронов, то не исключено, что природа высокотемпературной  сверхпроводимости может проясниться  не только для данного класса сверхпроводников.

Информация о работе Сверхпроводимость. Изотопический эффект и его применение