Автор работы: Пользователь скрыл имя, 22 Октября 2013 в 17:17, реферат
Из выражения следует, что спектр дискретного сигнала представляет собой непрерывную периодическую функцию с периодом F, совпадающую (при определенных условиях конечности спектра непрерывного сигнала) с функцией FЧ S(f) непрерывного сигнала s(t) в пределах центрального периода от -fN до fN, где fN = 1/2Dt = F/2. Частоту fN (или для круговой частоты wN = p/Dt) называют частотой Найквиста. Центральный период функции SF(f) называют главным частотным диапазоном.
Интуитивно понятно, что если спектр главного частотного диапазона с точностью до постоянного множителя совпадает со спектром непрерывного сигнала, то по этому спектру может быть восстановлена не только форма дискретного сигнала, но и форма исходного непрерывного сигнала. При этом шаг дискретизации и соответствующее ему значение частоты Найквиста должны иметь определяющее значение.