Автор работы: Пользователь скрыл имя, 10 Апреля 2013 в 19:26, реферат
Метод тёмного поля в проходящем свете (Dark-field microscopy) используется для получения изображений прозрачных неабсорбирующих объектов, которые не могут быть видны, если применить метод светлого поля. Зачастую это биологические объекты. Свет от осветителя и зеркала направляется на препарат с конденсором специальной конструкции — конденсором тёмного поля. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив (который находится внутри этого конуса). Изображение в
Специальные методы световой микроскопии (освещения и наблюдения).
Метод темного поля.
Методы микроскопии
Метод тёмного поля в проходящем
свете (Dark-field microscopy) используется для
получения изображений
В поле зрения на тёмном фоне
видны светлые изображения
Метод ультрамикроскопии
В основе метода ультрамикроскопии
лежит тот же принцип – препараты
в ультрамикроскопах освещаются
перпендикулярно направлению
Метод светлого поля и его разновидности
Метод светлого поля в проходящем свете применяется при изучении прозрачных препаратов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Это могут быть, например, тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и т. д. В отсутствие препарата пучок света из конденсора, проходя через объектив, даёт вблизи фокальной плоскости окуляра равномерно освещенное поле. При наличии в препарате абсорбирующего элемента происходит частичное поглощение и частичное рассеивание падающего на него света, что и обусловливает появление изображения. Возможно применение метода и при наблюдении неабсорбирующих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.
Метод косого освещения - разновидность
предыдущего метода. Отличие между
ними состоит в том, что свет
на объект направляют под
Метод светлого поля в отражённом
свете применяется при
Метод фазового контраста
Метод фазового контраста — метод предназначеный для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К таковым относятся, например, живые неокрашенные животные ткани. Суть метода в том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Не воспринимаемые непосредственно ни глазом, ни фотопластинкой, эти фазовые изменения с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Иными словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Получаемое таким образом изображение называется фазово-контрастным. Фазово-контрастное устройство может быть установлено на любом световом микроскопе и состоит из: набора объективов со специальными фазовым пластинками; конденсора с поворачивающимся диском. В нем установлены кольцевые диафрагмы, соответствующие фазовым пластинкам в каждом из объективов; вспомогательного телескопа для настройки фазового контраста.Вместо окуляра вставляют вспомогательный телескоп. Настраивают его так, чтобы были резко видны фазовая пластинка (в виде темного кольца) и кольцевая диафрагма (в виде светлого кольца того же диаметра). С помощью регулировочных винтов на конденсоре совмещают эти кольца. Вынимают вспомогательный телескоп и вновь устанавливают окуляр.
Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст). Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п. В этих случаях часто применяют биологические микроскопы с обратным расположением оптики - инвертированные микроскопы. У таких микроскопов объективы расположены снизу, а конденсор - сверху.
Поляризационная микроскопия
Поляризационная микроскопия
– это метод наблюдения в
поляризованном свете для
Метод интерференционного контраста
Метод интерференционного
Метод исследования в свете люминесценции
Метод исследования в свете
люминесценции (люминесцентная
ИЗУЧЕНИЕ УСТРОЙСТВА МИКРОСКОПА ИЗМЕРЕНИЕ ВЕЛИЧИНЫ МИКРОСКОПИРУЕМОГО ОБЪЕКТА.
Микроскоп – оптический прибор, предназначенный для получения увеличенных изображений малых объектов, невидимых невооруженным глазом. Нормальный глаз человека на расстоянии наилучшего зрения (25 см) может различить мелкую структуру, состоящую из линий или точек при условии, что они находятся друг от друга на расстоянии не меньше 0,07 мм. Размеры же бактерий, органических клеток, мелких кристаллов и т.д. значительно меньше этой величины. Для обнаружения и изучения таких объектов используются типы микроскопов. Оптическая схема микроскопа состоит из двух частей: объектива и окуляр (рис 1). Объектив представляет систему короткофокусных линз, которая предназначена для ослабления сферической и хроматической аберрации. Окуляр микроскопа состоит из нескольких линз. Ход лучей в микроскопе показан на рис 2. На рисунке 1 изображен общий вид. Его главные части: основание, коробка с микрометрическим механизмом 9, предметный столик 10, револьвер 11 с объективами 5, конденсор 2 и окуляр 7.
Оптическая схема состоит
из 2 частей: осветительной и
Рассматриваемый объект АВ, помещенный вблизи главного фокуса объектива образует за объективом действительное, обратное, увеличенное изображение , расположенное между фокусом и оптическим центром Ок окуляра. При рассмотрении этого изображения в окуляр, как в лупу, оно будет еще более увеличенным, мнимым и прямым. В конечном счете микроскоп дает изображение А2В2, которое является обратным по отношению к предмету АВ. Линейное увеличение микроскопа равно произведению увеличений, даваемых объективом и окуляром:
(1)
Увеличение микроскопа не может быть сколь угодно большим, и его значение не превышает 3000. Это связано с ограниченной разрешающей способностью микроскопа, обусловленной дифракционными явлениями, как изображение любого предмета есть результат дифракции и интерференции рассеянного объектом света. Разрешающей способностью называют свойства оптической системы давать раздельное изображение двух близко расположенных светящихся или освещенных точек объекта ( элемента структуры). Разрешающую способность принято измерять величиной :
R = 1/
где - предел разрешения, т.е. наименьшее возможное расстояние между двумя точками, при котором они видны раздельно.
Применяя это понятие
к условиям микроскопирования
Теоретически доказано, что предел разрешения можно определить по формуле (3),
где - длина волны света, n – показатель преломления среды, между предметом и объективом и объективом, – апертурный угол, т.е. угол, образованный крайними лучами, попадающими в объектив.
Произведение: n – sin ( ) - называют угловой апертурой.
Очевидно, чем выше разрешающая
способность, тем более мелкие детали
можно рассмотреть. Повышение разрешающей
способности оптического