Солнечная радиация

Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 17:43, реферат

Краткое описание

Поступающая от Солнца на Землю радиация является единственной формой прихода лучистой энергией, определяющей энергетический баланс и термический режим Земли. Радиационная энергия, приходящая к земле от всех других небесных тел, на столько мала, что не оказывает сколько-нибудь заметного влияния на происходящие на Земле процессы теплообмена. В соответствии с температурой излучающей поверхности Солнца максимум радиационной энергии наблюдается при длинах волн около 0,50 мкм, причем основная часть энергии, излучаемой Солнцем, приходится на интервал длин волн 0,3-2,0 мкм.

Содержание

1.Солнечная радиация………………………………………………………...….3
2. Солнечная постоянная…………………………………………………………3
3. Радиационный баланс………………………………….………………………5
4. Энергетический баланс……………………………………………………...…7
5. Распределение составляющих энергетического баланса……………………9
6. Современный климат…………………………………………………………14
7.Список использованных источников…………………………………………18

Прикрепленные файлы: 1 файл

доклад.doc

— 101.50 Кб (Скачать документ)

Распределение изолиний суммарной солнечной радиации носит в основном зональный характер, который существенно нарушается неравномерным распределением облачности. Нарушения зональности имеют место в средних широтах обоих полушарий, где интенсивно развита циклоническая деятельность (западное побережье Канады, север Европы, юго-западное побережье Южной Америки и др.), в восточных районах тропических зон океанов, под влиянием пассатных инверсий и холодных морских течений, в областях действия муссонной циркуляции (Индостан, восточное побережье Азии, северо-запад Индийского океана).

При рассмотрении данных о распределении суммарной  радиации для зимних месяцев следует отметить быстрое уменьшение ее в направлении к полюсам соответствующих полушарий, что связано со снижением полуденной высоты Солнца и сокращением продолжительности дня. Вместе с. тем для зимнего периода характерны значительные межширотные изменения суммарной радиации': от значений около 200—220 Вт/мв низких широтах до значений, равных нулю в полярных широтах, куда в этот период суммарная радиация не поступает.

Наибольшие  месячные значения радиации в низких широтах соответствуют областям действия экваториальных муссонов, где  в это время года облачность мала.

Отличительными  чертами летнего распределения  суммарной радиации является установление высоких ее значений на всем полушарии при малой их географической изменчивости. Максимальное количество солнечного тепла получают тропические и субтропические пустыни — свыше 300 Вт/м2. Большое количество солнечной энергии летом поступает также в полярные районы, где влияние небольших высот Солнца компенсируется значительной продолжительностью дня. Самые большие значения солнечной радиации в летние месяцы отмечаются в центральных областях Антарктиды. Так, в январе средние месячные значения изменяются от 250—300 Вт/мна побережье до 450 Вт/мвнутри материка, что заметно превышает значения для областей тропических пустынь (Маршунова, 1980).

Средние годовые  значения радиационного баланса поверхности суши земного шара изменяются от величин, меньших —7 Вт/мв Антарктиде и близких к нулю в центральных районах Арктики, до 120—130 Вт/мв тропических широтах.

Влияние астрономических  факторов, обусловливает зональный  характер распределения средних  годовых и месячных значений радиационного баланса на равнинных территориях, расположенных в высоких и средних широтах северного полушария. Широтное распределение нарушается в областях, где циркуляционные факторы существенно изменяют условия облачности.

Из данных о  распределении радиационного баланса в отдельные месяцы следует, что наименьшие средние месячные значения радиационного баланса, отмечаются в высоких полярных широтах; от —15 до —30 Вт/мзимой и около 65 Вт/млетом. В средних широтах северного полушария наблюдаются средние месячные значения радиационного баланса от —15 до —30 Вт/мв январе и от110 до 145 Вт/мв июле. В тропических внеэкваториальных широтах и в период зимнего солнцестояния значения радиационного баланса составляют 55—65 Вт/м2, а в летние месяцы максимальные значения достигают 145—160 Вт/м2, уменьшаясь до 85— 95 Вт/мв областях пустынь и экваториальных муссонов.

Распределение значений радиационного баланса  на поверхности океанов, аналогично распределению суммарной радиации. Максимальное среднее годовое значение радиационного баланса на океанах приближается к 200 Вт/м2. Наименьшие средние годовые значения для свободной ото льдов поверхности океанов отмечаются у границы плавучих льдов и составляют около 20—40 Вт/м2. Следует указать, что средние годовые значения радиационного баланса на всей безледной поверхности океанов положительны.

В зимние месяцы радиационный баланс океанов изменяется от 140—160 Вт/мв экваториальных широтах до небольших по абсолютной величине отрицательных значений (около —30 Вт/м2) в средних широтах. При этом радиационный баланс становится отрицательным в обоих полушариях выше широт 45°.

В летние месяцы средние значения радиационного  баланса океанов достигают максимальных величин: более 200 Вт/мв тропических широтах и 130—-140 Вт/мв высоких. В эти месяцы распределение радиационного баланса в отличие от зимы заметно отклоняется от зонального, причем области повышенных и пониженных значений соответствуют областям повышенной и пониженной облачности.

Испарение

Средние месячные значения затраты тепла на испарение (и турбулентного теплообмена с атмосферой) на океанах рассчитаны по материалам многолетних судовых наблюдений на акваториях Атлантического, Индийского и Тихого океанов.

Рассматривая  особенности распределения средней  затраты тепла на испарение на суше за год, можно отметить, что диапазон изменения ее значений составляет около 110 Вт/м2. В районах достаточного увлажнения средняя годовая затрата тепла на испарение возрастает вместе с увеличением радиационного баланса от высоких широт к экватору, изменяясь от значений, меньших 10 Вт/мна северных побережьях континентов, до значений более 80 Вт/мво влажных экваториальных лесах Южной Америки, Африки и Малайского архипелага. В районах недостаточного увлажнения величина затраты тепла на испарение определяется засушливостью климата, уменьшаясь с увеличением засушливости. Наименьшие значения средней годовой затраты тепла на испарение отмечаются в тропических пустынях, где они составляют всего несколько Вт/м2.

Годовой ход  затраты тепла на испарение также определяется ресурсами тепловой энергии и воды. Во внетропических широтах с условиями достаточного увлажнения наибольшие значения затраты тепла на испарение в соответствии с годовым ходом радиационного баланса имеют место летом, достигая 80—100 Вт/м2. Зимой затрата тепла на испарение мала. В районах недостаточного увлажнения максимум затраты тепла на испарение также обычно наблюдается во время теплого периода, однако время достижения максимума существенно зависит от режима увлажнения.

В тропических  широтах с влажным климатом затрата  тепла на испарение велика в течение  всего года и составляет около 80 Вт/м2. В районах с сезонами пониженных осадков отмечается некоторое уменьшение затраты тепла на испарение, однако амплитуда ее годового хода сравнительно невелика. В областях с хорошо выраженным сухим периодом наибольшие значения затраты тепла на испарение отмечаются в конце влажного периода, наименьшие — в конце сухого.

В целом для  суши земного шара (включая Антарктиду) средняя за год затрата тепла на испарение составляет 38 Вт/м2.

Распределение средних годовых значений затраты  тепла на испарение на океанах в общем сходно с распределением радиационного баланса. Изменение средней затраты тепла на испарение довольно велико: от значений, больших 160 Вт/мв тропических широтах, до значений около 40 Вт/му границы льдов. В экваториальных широтах средняя затрата тепла на испарение несколько понижена по сравнению с более высокими широтами (меньше 130 Вт/м2), что является следствием увеличения облачности и влажности.

Помимо радиационного  тепла, расходуемого на испарение с  океанов, в ряде районов на испарение  затрачивается также тепло, переносимое  течениями. Поэтому зональный характер распределения затраты тепла на испарение нарушается заметными отклонениями в районах действия теплых и холодных течений.

Средние годовые  величины затраты тепла на испарение  с океанов зависят в основном от величин для осенне-зимнего периода. Распределение затраты тепла на испарение в зимние месяцы аналогично годовому распределению. В это время усиливается влияние теплых течений, в связи с чем отчетливо проявляются особенности отдельных океанов: затрата тепла на испарение с поверхности Северной Атлантики в средних широтах вдвое больше, чем в тех же широтах Тихого океана. Самые низкие значения затраты тепла на испарение отмечаются в средних широтах южного полушария в Атлантическом и Индийском океанах. В эти районы со сравнительно невысокими температурами воды из низких широт поступают более теплые воздушные массы, что уменьшает затраты тепла на испарение.

При переходе к  лету влияние теплых течений на величину затраты тепла на испарение ослабевает из-за уменьшения энергетических ресурсов течений. Поскольку в летние месяцы происходит снижение средних скоростей ветра и ослабление контраста температуры вода—воздух, расход тепла на испарение заметно падает. Вместе с этим уменьшается различие в значениях затраты тепла на испарение с поверхности отдельных океанов.

Наибольшие  средние годовые значения турбулентного потока тепла между поверхностью суши и атмосферой отмечаются в тропических пустынях, где они достигают 70—80 Вт/м2. С увеличением увлажнения климата турбулентный поток уменьшается. Так, в районах влажных тропических лесов средний годовой турбулентный поток составляет 15—40 Вт/м2. С продвижением в более высокие широты турбулентный поток уменьшается вместе с понижением радиационного баланса. На северных побережьях континентов северного полушария турбулентный поток составляет менее 10 Вт/м2. Такие же значения отмечаются в некоторых районах достаточного увлажнения средних широт.

В годовом ходе наблюдается таже закономерность –  возрастание турбулентного потока с увеличением радиационного баланса. В силу этого во внетропических широтах наибольшие в годовом ходе значения турбулентного потока отмечаются летом, наименьшие—зимой. При этом для территории, расположенной выше 40° северной и южной широт, характерна смена направления турбулентного потока в течение года. В зимнее время земная поверхность получает тепло из атмосферы путем турбулентного теплообмена, однако значения теплоотдачи от атмосферы невелики, даже на Крайнем Севере они составляют менее 10 Вт/м2.

Поверхность континентов  от экватора до 40° северной и южной широт в течение всего года отдает тепло посредством турбулентной теплопроводности. При этом в низких широтах годовой ход турбулентного потока существенно зависит от увлажнения. Наибольшие средние месячные значения турбулентного потока наблюдаются в период минимума атмосферных осадков. В субтропических широтах со средиземноморским типом климата максимальные средние месячные значения турбулентного потока наблюдаются летом и достигают 100 Вт/м2. В пустынях, особенно прибрежных, где существенное влияние на турбулентный теплообмен оказывают процессы трансформации воздушных масс на границе вода—суша, значения турбулентного потока превосходят 100 Вт/м2. Во влажных тропических районах турбулентный поток невелик в течение всего года, его средние месячные значения составляют менее 30 Вт/м2..

Данные о распределении составляющих энергетического баланса земной поверхности позволяют определить средние значения этих составляющих для всего земного шара.

Первые расчеты  составляющих энергетического баланса  системы Земля—атмосфера были выполнены в 20—30-х годах нашего столетия Симпсоном, Бауром, Филиппсом и Тролле. Мировые карты радиационного баланса системы Земля—атмосфера, прихода тепла от конденсации в атмосфере и переноса тепла воздушными течениями, построенные К.Я. Винниковым, были опубликованы в 1963 г. в «Атласе теплового баланса земного шара».. В конце 60-х годов в связи с развитием наблюдений на метеорологических спутниках Земли открылись возможности построения карт элементов радиационного режима системы Земля—атмосфера непосредственно по материалам наблюдений. Первые карты, такого рода содержали данные для отдельных интервалов времени. Впоследствии поэтам материалам были построены карты средних за ряд лет элементов радиационного режима.

6. Современный  климат

Климат оказывает  глубокое влияние на живые организмы. Географическое распределение растений и животных, характер и интенсивность биологических процессов во многом определяются климатическими условиями. Изменения климата являются одним из факторов эволюции биосферы.

Остановимся на главных чертах современного климата.

Климатические условия последнего столетия определены на основе данных инструментальных метеорологических  наблюдений, проведенных на мировой  сети климатических станций, сложившейся во второй половине XIX в.

Материалы этих наблюдений показывают, что элементы метеорологического режима заметно изменяются во времени. Наряду с их периодическими колебаниями (суточный и годовой ход) существуют непериодические изменения метеорологических элементов с различными временными масштабами. Для коротких интервалов времени (порядка дней или месяцев) непериодические изменения метеорологического режима характеризуют колебания погоды. Эти неоднородные в пространстве изменения объясняются главным образом неустойчивостью атмосферной циркуляции. Для более длительных интервалов времени (начиная с нескольких лет) наряду с неупорядоченными колебаниями элементов метеорологического режима часто обнаруживаются долгопериодичные изменения, имеющие на обширных территориях сходный характер. Такие изменения характеризуют колебания климата.

Поскольку современные  колебания климата сравнительно невелики, для характеристики климата нашей эпохи можно использовать средние значения метеорологических элементов за период в несколько десятилетий. Такое осреднение позволяет исключить влияние неустойчивости атмосферной циркуляции на элементы метеорологического режима.

Приведем краткие  сведения о современном климате, уделив главное внимание двум метеорологическим  элементам — температуре воздуха у земной поверхности и сумме осадков, выпадающих, на земную поверхность.

Средняя широтная температура воздуха у земной поверхности изменяется почти на 80°С, от максимального значения у  экватора до минимального у южного полюса.

Существенное влияние на распределение этих температур оказывает шарообразная форма Земли, обусловливающая изменение с широтой сумм солнечной радиации, приходящей на верхнюю границу атмосферы.В высоких широтах, где в течение всего года или большей его части температура воздуха не поднимается выше точки замерзания, существуют постоянные ледяные покровы.

Наряду с  существенным изменением в меридиональном направлении средняя температура воздуха у земной поверхности в большинстве широтных зон также заметно изменяется на различных долготах, что в основном связано с размещением континентов и океанов.

Влияние теплового  режима океана распространяется на значительную часть поверхности континентов, на которой в средних и высоких широтах наблюдается так называемый морской климат со сравнительно небольшой годовой амплитудой температуры воздуха. В тех внетропических областях материков, где влияние термического режима океанов менее заметно, годовые амплитуды температуры резко возрастают, что соответствует условиям континентального климата.

Информация о работе Солнечная радиация