Автор работы: Пользователь скрыл имя, 28 Января 2014 в 16:47, курсовая работа
Основной целью данного курсового проекта является решение задачи проектирования и исследования силовой части электропривода грузового лифта, а также достижение цели в том чтобы результаты проектирования могли быть использованы при производстве, монтаже и эксплуатации электропривода грузового лифта на любых предприятиях.
1. Введение………………………………………………………………….……..8
2. Конструкция, технические характеристики, типы лифтов (подъёмников)…9
3. Основные технические требования при проектировании,
установке и эксплуатации лифтов (подъёмников)……………………..……23
4. Выбор рода тока и типа электропривода…………………………………….26
5. Расчет мощности и выбор приводного электродвигателя;
определение передаточного числа и выбор редуктора……………………..27
5.1 Выбор двигателя………………………………………………………......…27
5.2 Выбор редуктора…………………………………………………………….28
6. Расчёт приведенных статических моментов (моментов сопротивлений), мо-ментов инерции и коэффициента жёсткости системы...28
7. Предварительная проверка двигателя по нагреву и производительно-сти...32
8. Допустимая частота пусков………………………………………………..…34
9. Построение механической характеристики…………………………………36
10. Построение переходных процессов………………………………………...37
Литература………………………………………………………………………..38
Определим суммарный момент инерции:
Кабины
лифта
Определим моменты при подъёме:
Кабина
лифта
Момент потерь в редукторе определяется текущими значениями нагрузки передачи. Его можно приближенно принять постоянным и равным моменту, соответствующему статическому режиму.
Момент сопротивления первой и второй масс соответственно равны:
Кабина лифта
Противовес
Определим суммарный момент инерции привода с учетом одномассовости системы:
Определим коэффициент жёсткости:
Clin – линейная жёсткость Н/м2
Определим жёсткость связи между первой и второй массами:
Для этого используется высота подъёма кабины h. (h=6м).
По рассчитанным данным получаем кинематическую схему:
Рисунок 11 –Схема двухмассовой системы.
Данной кинематической схеме электропривода лифта соответствует структурная схема:
Рисунок12 - Структурная схема электропривода лифта.
Система уравнений двухмассовой системы (стр. 55 Ключев)
Обозначив d/dt=p, а запишем:
Частота собственных колебаний двухмассовой упругой системы.
Возможность упрощения модели механической части электропривода тоесть представление последней в виде одномассовой (жесткой) системы можно оценить по значению отношения:
Поскольку значение γ12 незначительно превышает единицу (значение J2 составляет около 15% от значения J1), то можем считать J2 << J1. В таком случае можно представить механическую часть электропривода жестким приведенным звеном (рис13. ), суммирующий момент инерции которого равен:
Суммирующий момент нагрузки при движении на подъём равен:
Динамический момент равен:
Рисунок13 –Схема одномассовой системы.
Уравнение движения одномассовой системы имеет вид:
М-Мс=Jсум·p·ω. (т.е Макт-Мсум=Jсум·p·ω).
Для построения механической характеристики нагрузки Мс(ω) в данном положении кабины лифта и противовеса нужно определить момент нагрузки предположении, что осуществляется опускание загруженной кабины лифта. В этом случае потенциальные (активные) моменты М1 и М2 сохраняют свое направление, а реактивный момент потерь Мр изменяет его на противоположное. Следовательно, при изменении знака скорости момент нагрузки изменяет свое направление:
M'c = М1+ (-М2)+ (-Мр) = 245.25 – 196.2 – 2.582 = 46.468 Н·м.
Механическая характеристика нагрузки показана на рис 14. При опускании кабины с грузом двигатель работает в тормозном режиме. Тормозной момент М= M'c совместно с моментом потерь Мр уравновешивают движущий активный момент
Макт = М1+ (-М2)= 245.25 – 196.2 =49.05Н·м.
обусловленный результирующим усилием на шкиве от разности масс загруженной кабины и противовеса.
Рисунок 14 – Механическая характеристика нагрузки.
Определяем номинальную угловую скорость вращения ротора двигателя.
Определяем номинальный момент.
Определяем приведенное ускорение.
Определяем пусковой, установившийся и тормозной моменты:
Определяем время пуска:
Определяем время торможения
Время торможения равняется времени пуска
Путь, проходимый за время пуска (торможения) рабочей машиной (стр.11, Драчев)
Время установившегося режима движения со средней скоростью.
Рисунок 15 – Нагрузочная диаграмма при подъеме груза.
Коэффициент ухудшения теплопроводности: β=0.5
При пуске и торможении скорость изменяется от 0 до ωном значит средняя скорость ωср=ωном/2, ωср=ωном/2=97,39/2=48,695 рад/сек.
Рассчитываем мощности на разных участках диаграммы.
Для проверки двигателей по нагреву применяются методы эквивалентного момента, эквивалентного тока и эквивалентной мощности.
Проверка выбранного двигателя методом эквивалентной мощности.
Эквивалентная мощность:
Мощность выбранного двигателя (9 кВт) больше рассчитанного, поэтому данный двигатель проходит по нагреву и его можно использовать в данной системе.
Сравнение пускового и максимального моментов с рассчитанными значениями.
Из расчетов можно сделать вывод, что двигатель проходит по всем параметрам.
Расчеты производились при подъеме груза, а значит если данный двигатель сможет поднять груз, то он сможет его и опустить. Данный вывод можно сделать исходя из того, что при поднятии груза mg действует против направления груза, а при опускании – по направлению. Следовательно для опускания груза понадобится меньше мощности.
Начальное скольжение.
Номинальное скольжение Sн и критическое скольжение Sк двигателя.
Номинальное скольжение:
Критическое скольжение:
Определяем критическую угловую скорость вращения ротора двигателя:
Номинальное напряжение, конструктивный коэффициент, мощность двигателя:
Механические потери:
Коэффициент вязкого трения:
Сопротивление ротора:
Сопротивление статора:
Индуктивность статора и ротора:
Индуктивность статора и индуктивность ротора должны быть приблизительно одинаковы.
Индуктивность рассеивания статора и индуктивность рассеивания ротора:
Взаимоиндукция:
Проверка конструктивного коэффициента:
Можно принять что С1(1.068) совпадает с выбранным ранее с1(1.066), (небольшая разница в полученных данных произошла в результате округлений данных в расчётах), значит конструктивный коэффициент выбран правильно.
Приведенное активное сопротивление ротора:
Потери энергии в статоре:
Потери энергии при нагрузке:
Средний момент:
Потери энергии при пуске и торможении (Дж):
Потери мощности в номинальном режиме:
Допустимая частота включений:
Допустимая частота включений (по условию) Z =30, а допустимая частота включений двигателя ( рассчитанная Z =530) значит по частоте включений двигатель вполне подходит.
9. Построение механической характеристики, используя формулу Клосса:
Для удобства производится также построение механической характеристики в логарифмическом масштабе.
Рисунок 16 – Механическая характеристика двигателя.
Графическим способом можно найти скольжение при пусковом и установившемся моментах (что и показано на графиках). Sпуск=0,11(11%), Sуст=0,035(3,5%).
5.7 Построение характеристики изменения скорости при изменении момента сопротивления на валу двигателя.
β – жесткость механической характеристики электропривода.
Линеаризированная механическая характеристика асинхронного двигателя.
Рисунок 17 – Линеаризированная механическая характеристика.
10. Построение переходных процессов.
Все полученные в ходе проектирования данные вводятся в виртуальную электронную лабораторию (математический пакет)MATLAB, и производится построение переходных процессов.
Рисунок 18 – Структурная схема ЭП
1. Львов А.П. Справочник электромонтёра. – Киев: Вища школа, Главное издательство, 1980,- 376 стр.
2.П.С. Сергеев Проектирование электрических машин. Издательство “Энергия”, 1970 г.
3. М.М. Кацман. Проектирование электрических машин. М. Энергоатомиздат, 1984г.
4. Ключев В.И.: «Теория электропривода», Москва, Энергоатомиздат, 1985г.
5. Герман-Галкин С.Г.: «Компьютерное моделирование полупроводниковых систем в MatLab 6.0», Санкт-Петербург, Корона Принт, 2001г.
6. Иванченко Ф.К.: «Конструкция и расчет подъемно-транспортных машин», Киев, Вища Школа, 1983г.
7. Драчев Г.И.: «Теория электропривода», Челябинск, ЮУрГУиздат, 2002г.
8. Борцов Ю. А, Соколовский Г. Г. Автоматизированный электропривод с упругими связями. - СПб.: Энергоатомиздат, 1992.
Информация о работе Силова частина електроприводу вантажного ліфта