Шпаргалка по "Физике"

Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 10:09, шпаргалка

Краткое описание

1 Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; Гора Эльбрус находится в покое относительно Земли и движется вместе с Землёй относительно Солнца. Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчёта. Система координат, тело отсчёта с которым она связана, и выбранный способ измерения времени образуют систему отсчёта. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля на стыковке со станцией, без учёта её размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией. Длину части траектории между начальным и конечным положением точки называют путем (l). Единица пути – метр.

Прикрепленные файлы: 1 файл

Шпоры.doc

— 79.00 Кб (Скачать документ)

1  Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; Гора Эльбрус находится в покое относительно Земли и движется вместе с Землёй относительно Солнца. Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчёта. Система координат, тело отсчёта с которым она связана, и выбранный способ измерения времени образуют систему отсчёта. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля на стыковке со станцией, без учёта её размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией. Длину части траектории между начальным и конечным положением точки называют путем (l). Единица пути – метр.

Механическое движение характеризуется  тремя физическими величинами: перемещением, скоростью и ускорением. Направленный отрезок прямой, проведённый из начального положения движущейся точки в её конечное положение, называется перемещением (S). Это величина векторная. Единица перемещения – метр.

Скорость – векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым если скорость в течение этого промежутка не менялась. Определяющая формула скорости имеет вид Единица измерения скорости – м/с. На практике – км/ч. Измеряют скорость спидометром.

Ускорение – векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к  промежутку времени, в течение которого это изменение произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле Единица измерения ускорения м/с2.

Характеристики механического  движения связаны между собой  основными кинематическими уравнениями:

Предположим, что тело движется без  ускорения (самолёт на маршруте), его скорость в течение продолжительного времени не меняется, а=0. Тогда кинематические уравнения будут иметь вид: V=const, S=Vt.

Движение, при котором скорость тела не меняется, т.е. тело за любые  равные промежутки времени перемещается на одну и ту же величину, называют равномерным прямолинейным движением.

Во время старта скорость ракеты быстро возрастает, т.е. ускорение а>0, а=const.

В этом случае кинематические уравнения  выглядят так:

При таком движении скорость и ускорение имеют одинаковые направления, причём скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называют равноускоренным.

При торможении автомобиля скорость уменьшается одинаково за любые  равные промежутки времени, ускорение  меньше нуля; т.к. скорость уменьшается, то уравнение принимает вид: Такое движение называется равнозамедленным.

Все физические величины, характеризующие  движение тела (скорость, ускорение, перемещение), а также вид траектории, могут  изменяться при переходе из одной системы к другой, т.е. характер движения зависит от выбора системы отсчёта, в этом и проявляется относительность движения. Например, в воздухе происходит дозаправка самолёта топливом. В системе отсчёта, связанной с самолётом, другой самолёт находится в покое, а в системе отсчёта, связанной с Землёй, оба самолёта находятся в движении. При движении велосипедиста точка колеса в системе отсчёта, связанной с осью, имеет траекторию:

В системе отсчёта, связанной с  Землёй вид траектории будет таким:

2 Скорость — векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка времени.

Формула скорости имеет  вид v = s/t. Единица скорости — м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с).

Ускорение — векторная  физическая величина, характеризующая  быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение  которого это изменение произошло. Формула для вычисления ускорения: a=(v-v0)/t; Единица ускорения – метр/(секунд

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале  его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль  касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение  скорости по модулю при криволинейном движении.

Направление вектора  тангенциального ускорения τ  совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения  лежит на одной оси с касательной  окружности, которая является траекторией  движения тела.

Нормальное ускорение

Нормальное ускорение  – это составляющая вектора ускорения, направленная вдоль нормали к  траектории движения в данной точке  на траектории движения тела. То есть вектор нормального ускорения перпендикулярен  линейной скорости движения . Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

 

 

 

 

 

 

 

3Угловой скоростью называют векторную величину, характеризующую быстроту вращения твердого тела, определяемую как приращение угла поворота тела за промежуток времени.Рассмотрим бесконечно малый промежуток времени Δt → 0, за который твердое тело совершает поворот на бесконечно малый угол  Δα вокруг мгновенной оси Ω (рисунок 3.2). Рис. 3.2 

 

Предел, к которому стремится отношение  Δα / Δt, называется угловой скоростью  твердого тела в рассматриваемый  момент времени

Угловая скорость является векторной  величиной. Вектор угловой скорости ω может быть приложен к любой  точке мгновенной оси и направлен в каждый момент времени по мгновенной оси Ω, так, чтобы, смотря навстречу этому вектору, видеть вращение тела происходящим против движения часовой стрелки.Угловое ускорение при вращении телаУгловым ускорением называют степень изменения угловой скорости.За вектор углового ускорения ε при вращении тела вокруг неподвижной точки принимают вектор, который характеризует изменение угловой скорости ω в данный момент как по числовой величине, так и по направлению. Такой характеристикой является производная по времени от вектора угловой скорости ω. Таким образом, угловое ускорение определяется так:

Рис. 3.3 В общем случае угловое ускорение не направлено по мгновенной оси, а, как производная по времени от вектора ω, параллельно касательной к годографу этого вектора. Условимся угловое ускорение ε изображать в любой точке прямой, параллельной этой касательной годографа угловой скорости u, но проходящей через неподвижную точку тела (рисунок 3.3). Прямая, по которой направлен вектор углового ускорения, называется осью углового ускорения и обозначается E.


Информация о работе Шпаргалка по "Физике"