Радиоактивный каротаж

Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 19:35, контрольная работа

Краткое описание

Радиоактивный каротаж (РК) – исследования, основанные на измерении параметров полей ионизирующих частиц (нейтронов и гамма-квантов) с целью определения ядерно-физических свойств и элементного состава горных пород. Радиоактивный каротаж нефтяных и газовых скважин включает следующие основные группы измерений: гамма-каротаж – ГК, гамма-гамма каротаж – ГГК, нейтронный каротаж – НК, нейтронный активационный каротаж. Каждая группа подразделяется на несколько модификаций, различающихся типом и энергетическим спектром регистрируемого излучения, конструкцией измерительных зондов, методиками измерений и обработки первичных данных.

Прикрепленные файлы: 1 файл

МЕТОДЫ РАДИОАКТИВНОСТИ.doc

— 1.76 Мб (Скачать документ)

Теоретические основы метода

Радиоактивный каротаж
Основные положения

Радиоактивный каротаж (РК) – исследования, основанные на измерении параметров полей ионизирующих частиц (нейтронов  и гамма-квантов) с целью определения  ядерно-физических свойств и элементного состава горных пород. Радиоактивный каротаж нефтяных и газовых скважин включает следующие основные группы измерений: гамма-каротаж – ГК, гамма-гамма каротаж – ГГК, нейтронный каротаж – НК, нейтронный активационный каротаж. Каждая группа подразделяется на несколько модификаций, различающихся типом и энергетическим спектром регистрируемого излучения, конструкцией измерительных зондов, методиками измерений и обработки первичных данных.

Приборами РК непосредственно измеряются сигналы детекторов ионизирующего излучения в виде скорости счета – числа импульсов, регистрируемых в единицу времени. В импульсных и спектрометрических модификациях РК регистрируют скорости счета во временных и энергетических окнах.

Переход от скорости счета к геофизическим  характеристикам пород (плотность пород) и их геологическим параметрам (пористость, насыщенность, вещественный состав пород) осуществляют с использованием зависимостей между показаниями скважинных приборов и указанными характеристиками и параметрами, установленными на моделях пород (с имитацией скважины) или методами математического моделирования.

Наиболее важными эксплуатационными  и метрологическими характеристиками приборов РК считаются:

    • диапазоны измерения геофизических характеристик;
    • предел допускаемой основной погрешности измерений;
    • допускаемые максимальные скорости счета;
    • нестабильность скорости счета при непрерывной работе прибора;
    • максимальные значения температуры и давления в скважине;
    • максимальное и минимальное значение внутреннего диаметра исследуемых скважин (обсадных колонн, НКТ);
    • вертикальное разрешение метода и глубинность исследований.

Значения этих характеристик и  допускаемые отклонения от них регламентируются требованиями эксплуатационной документации на конкретные приборы.

Минимальные требования к методическому обеспечению обработки данных заключаются в наличии основных интерпретационных зависимостей. Взаимосвязь устанавливают между измеряемыми скоростями счета и искомыми геофизическими характеристиками или геологическими параметрами пород. Дополнительно используют зависимости для учета геолого-технических условий измерений: давления и температуры в скважине, ее диаметра, свойства промывочных жидкостей и глинистой корки, диаметров и толщин обсадной колонны и цементного кольца, вещественного состава пород, минерализации пластовых вод, плотности флюидов и т.п. 

В зависимости от решаемой задачи выделяют общие и детальные исследования методами РК. Отличия между ними заключаются в требованиях получения  неискаженной информации для пластов  с минимальной мощностью, параметры которых подлежат количественной оценке. Выполнение этих требований достигается выбором максимально допустимой скорости каротажа.

Повышение детальности исследований достигается уменьшением шага дискретизации  по глубине при одновременном  снижении скорости каротажа. Шаг дискретизации по глубине выбирают из ряда 0,2; 0,1; 0,05 м.

Гамма-каротаж

Принцип гамма-каротажа (ГК) основан  на регистрации скважинными приборами  естественной радиоактивности горных пород слагающих разрез скважины.

Естественной радиоактивностью называется самопроизвольный распад ядер некоторых химических элементов слагающих горные породы. Естественная радиоактивность слагается из способности горных пород испускать альфа- , бета - и гамма-излучение. Глубина проникновения альфа-излучения в горных породах составляет первые десятки микрон, бета-излучения – первые миллиметры, а гамма-излучения – от 30 до 40 см. Следовательно, с точки зрения изучения разрезов скважин только гамма-излучение представляет практический интерес.

Величина естественной радиоактивности горных пород определяется в основном содержанием в них трех основных химических элементов: урана, тория и изотопа калия-40.

Основы применения ГК в скважинах, пробуренных на нефть и газ, связаны  с четкой зависимостью величины гамма-излучения от характера горной породы. Самую высокую радиоактивность среди осадочных горных пород имеют глубоководные илы, черные битуминозные глины, аргиллиты, глинистые сланцы, калийные соли. Средняя радиоактивность характерна для неглубоководных и континентальных глин, глинистых песчаников, мергелей глинистых известняков и доломитов. К породам с низкой радиоактивностью относятся ангидриты, гипсы, песчаники, пески, доломиты, угли. В общем случае кривая ГК характеризует разрез скважины от величины глинистости горных пород, что облегчает выделение коллекторов, которые могут содержать подвижные флюиды, такие как нефть и газ.

 

                                                        ГК

 

Для регистрации естественной радиоактивности горных пород разработаны и применяются два типа зондов:

  1. Зонд для регистрации суммарного гамма – излучения, который записывает общий объем гамма – лучевой активности горных пород вскрытых скважиной вне зависимости от типа источника.
  2. Зонд для определения спектра источника гамма – излучения или спектральный гамма – каротаж, – который наряду с регистрацией суммарного ГК дает представление о концентрации каждого радиоактивного элемента (урана, тория и калия) в изучаемой горной породе.

Наиболее часто в практике проведения ГИС применяются зонды для регистрации суммарного спектра гамма – излучения – гамма – каротаж (ГК).

По данным ГК решают следующие задачи:

- литологическое расчленение различных  типов горных пород. Интенсивность  гамма-излучения зависит от содержания в породах радиоактивных элементов. Т.к. оно в разных породах различно, по данным ГК можно судить о характере горных  пород.

- определение глинистости горных  пород по данным ГК основано  на прямой зависимости гамма-активности  песчано-глинистых горных пород;

- привязка к разрезу результатов  исследования другими методами  каротажа, интервалов перфорации  и др. Основана на возможности  проводить ГК в обсаженных  скважинах.

ОБЛАСТЬ ПРИМЕНЕНИЯ

    1. Литологическое расчленение разреза.
    2. Определение фильтрационно-емкостных свойств пластов.
    3. Корреляция разрезов скважин. (Привязка по глубине)
Плотностной гамма-гамма каротаж

Теоретические основы

 Регистрация плотностного гамма-гамма  каротажа (ГГК-П) основана на эффекте  рассеяния жесткого гамма-излучения  в изучаемой горной породе. Идея ГГК-П основана на известных принципах взаимодействия  g - излучения с различными веществами. Измеряя результат этого взаимодействия, можно, в частности определить и плотность горной породы. Основным фактором, влияющим на показания метода ГГК-П является эффект комптоновского рассеяния g - квантов источника высоких энергий электронами ядер минералов, слагающих горную породу. Взаимодействуя с электроном, g - квант  теряет часть своей энергии и меняет траекторию движения. Схема взаимодействия показана на  рис.1. 

После неоднократного повторения подобной реакции g - квант изменяет свою траекторию настолько, что может быть зарегистрирован детектором, находящимся в приборе. По сути, прибор ГГК-П измеряет электронную плотность горной породы, которая тесно связана с плотностью минералов слагающих ее.

Поскольку облучение горных пород  в скважине происходит жестким g - излучением, то регистрируемая детекторами мощность экспозиционной дозы рассеянного g - излучения находится в обратно пропорциональной зависимости от плотности среды. Следовательно, метод ГГК-П позволяет выполнять литологическое расчленение разреза, выделять пласты – коллектора и рассчитывать коэффициент пористости Кп.

Для производства работ применяется  двухзондовая аппаратура ГГК-П. (рис.2)


 

 

 

Дальний зонд

 

Ближний зонд

 

               экран

 

 

    Источник g - излучения

 

Рис.2. Схема зонда для регистрации  ГГК-П

 

Наличие двух зондов продиктовано тем, что при подобной регистрации  рассеянного g - излучения малый зонд позволяет более точно учесть влияние ближней зоны скважины (глинистой корки, бурового раствора), а дальний зонд регистрирует рассеянное g - излучение от горной породы. При производстве работ, с целью устранения влияния скважины на результаты  измерения зондовая часть прибора в обязательном порядке прижимается к стенке скважины прижимным устройством.

В качестве источников жесткого g - излучения в скважинных приборах применяются ампульные источники, содержащие изотопы 60Со или 137Сs.

Нейтронный метод

Нейтронный метод основан на облучении скважины и пород нейтронами от стационарного ампульного источника и измерении плотностей потоков надтепловых и тепловых нейтронов и гамма-квантов, образующихся в результате ядерных реакций рассеяния и захвата нейтронов. Измеряемая величина – скорость счета в импульсах в минуту (имп/мин); расчетная величина – водородосодержание пород в стандартных условиях в процентах.

В зависимости от регистрируемого  излучения различают: нейтронный каротаж  по надтепловым нейтронам – ННК-НТ; нейтронный каротаж по тепловым нейтронам - ННК-Т; нейтронный гамма-каротаж – НГК. Первые два вида исследований выполняют, как правило, с помощью компенсированных измерительных зондов, содержащих два детектора нейтронов (рис.3); НГК – однозондовыми или двухзондовыми приборами, содержащими источник нейтронов и один или два детектора гамма-излучения (рис.4).

 

Рис.3. Схема  прибора для нейтрон-нейтронного  каротажа.

Нейтрон-нейтронный каротаж по тепловым нейтронам (ННК-Т)

Нейтрон-нейтронный каротаж  по тепловым нейтронам основан на облучении горных пород быстрыми нейтронами от ампульного источника и регистрации нейтронов по разрезу скважины, которые в результате взаимодействия с породообразующими элементами замедлились до тепловой энергии.

Регистрируемая интенсивность тепловых нейтронов зависит от замедляющей и поглощающей способности горной породы. Наибольшая потеря энергии нейтрона наблюдается при соударении с ядром, имеющего массу равную единице, т.е. с ядром водорода. Для тепловых нейтронов, образующихся при замедлении быстрых нейтронов, наиболее характерен радиоактивный захват, сопровождающийся вторичным гамма-излучением. Таким образом, по данным ННК-Т можно определять водородосодержание, которое напрямую связано с пористостью для пластов-коллекторов.

При проведении измерений детектор тепловых нейтронов располагается  на определенном расстоянии от источника  нейтронов. Расстояние от источника  до детектора выбирается таким, что  при увеличении водородосодержания горных пород, зарегистрированная интенсивность тепловых нейтронов уменьшается, т.е. зонд является заинверсионным. Регистрация нейтронного излучения двумя зондами с разной длиной позволяет уменьшить влияние скважины на результат определения водородосодержания горных пород. Эффект основан на изменении радиальной глубины исследования от увеличения длины зонда. Малый зонд ННК-Т МЗ несет информацию в основном о нейтронных свойствах скважины и околоскважинного пространства, тогда как на интенсивность, зарегистрированную большим зондом ННКТ БЗ, большое влияние оказывают нейтронные свойства пласта. Поэтому для определения водородосодержания используют отношение скоростей счета в этих зондах.

 

Рис.4. Схема  прибора нейтронного гамма-каротажа.

 

Нейтронный каротаж применяют  в необсаженных и обсаженных скважинах с целью литологического расчленения разрезов, определения емкостных параметров пород (объемов минеральных компонент скелета и порового пространства), выделения газожидкостного и водонефтяного контактов, определения коэффициентов газонасыщенности в прискважинной части коллектора.

Областями эффективного применения НК при определении пористости и  литологическом расчленении разреза  являются:

    • для ННК-Т – породы с любым водородосодержанием, невысокими Спл и Спж (меньше 50-70 г/л NaCl) и слабой контрастностью Спл и Спж;
    • для НГК – породы с низким (меньше 8-12%) водородосодержанием и любыми Спл и Спж, а также породы со средним (8-20%) водородосодержанием, если Спл и Спж не превышают 100 г/л.

Областями эффективного применения НК при выделении газоносных пластов, газожидкостного контакта, определении коэффициента газонасыщенности являются:

    • для ННК-Т – породы с водородосодержанием более 10% при диаметре скважины, не превышающем 250 мм;
    • для НГК – породы с водородосодержанием менее 20%.

Измерительный зонд НК содержит ампульный источник нейтронов и один или два (и более) детектора нейтронов (тепловых) или гамма-излучения. Точка записи – середина расстояния между источником и детектором для однозондовых приборов и середина между двумя детекторами для компенсированных (двухзондовых) приборов.

Модуль НК комплексируется с  другими модулями без ограничений

Информация о работе Радиоактивный каротаж