Принцип действия и устройство генератора постоянного тока

Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 12:46, реферат

Краткое описание

Простейшим генератором является виток, вращающийся в магнитном поле полюсов N и S (см. изо). В таком витке индуктируется переменная во времени эдс.
Поэтому при соединении концов витка с контактными кольцами, вращающимися вместе с витком, в нагрузке через неподвижные щетки протекает переменный ток, т. е. такая машина является генератором переменного тока.
Для преобразования переменного тока в постоянный применяют коллектор, принцип действия которого состоит в следующем. Концы витка 1 (изо) присоединены к двум медным полукольцам (сегментам), называемым коллекторными пластинами.

Прикрепленные файлы: 1 файл

Документ Microsoft Office Word.docx

— 675.84 Кб (Скачать документ)

 

 

Устройство  асинхронного двигателя. 
 
Сердечник 1 статора (изо) набирается из стальных пластин толщиной 0,35 или 0,5 мм. Пластины штампуют с впадинами (пазами), изолируют лаком или окалиной для уменьшения потерь на вихревые токи, собирают в отдельные пакеты и крепят в станине 3 двигателя. 
 
К станине прикрепляют также боковые щиты с помещенными на них подшипниками, на которые опирается вал ротора. Станину устанавливают на фундаменте. 
 
Устройство статора асинхронного двигателя: 
1 - сердечник, 2 - обмотка, 3 - станина, 4 - щиток 
 
В продольные пазы статора укладывают проводники его обмотки 2, которые соединяют между собой так, что образуется трехфазная система. На щитке 4 машины имеется шесть зажимов, к которым присоединяются начала и концы обмоток каждой фазы. 
Для подключения обмоток статора к трехфазной сети они могут быть соединены звездой или треугольником, что дает возможность включать двигатель в сеть с двумя различными линейными напряжениями.

Соединение зажимов  на щитке двигателя 
при включении обмотки статора: 
а - треугольником, б - звездой





 
 
 
 
 
Например, двигатель может работать от сети с напряжением 220 и 127 В.  
На щитке машины указаны оба напряжения сети, на которые рассчитан двигатель, т. е. 220/127 В или 380/220 В.

Для более низких напряжений, указанных на щитке, обмотка  статора соединяется треугольником, для более высоких - звездой. 
 
При соединении обмотки статора треугольником на щитке машины верхние зажимы объединяют перемычками с нижними (изо), а каждую пару соединенных вместе зажимов подключают к линейным проводам трехфазной сети. Для включения звездой три нижних зажима на щитке соединяют перемычками в общую точку, а верхние подключают к линейным проводам трехфазной сети. 
 
Сердечник 1 ротора (изо, а) также набирают из стальных пластин толщиной 0,5 мм, изолированных лаком или окалиной для уменьшения потерь на вихревые токи.  
Пластины штампуют с впадинами и собирают в пакеты, которые крепят на валу машины. Из пакетов образуется цилиндр с продольными пазами, в которые укладывают проводники 2 обмотки ротора.  
 
В зависимости от типа обмотки асинхронные машины могут быть с фазным и короткозамкнутым роторами. Короткозамкнутая обмотка ротора выполняется по типу беличьего колеса (изо, б). В пазах ротора укладывают массивные стержни, соединенные на торцовых сторонах медными кольцами (изо, а).  
Часто короткозамкнутую обмотку ротора изгтавливают из алюминия. Алюминий в горячем состоянии заливают в пазы ротора под давлением. Такая обмотка всегда замкнута накоротко и включение сопротивлений в нее невозможно. 
 
Фазная обмотка ротора выполнена подобно статорной, т. е. проводники соответствующим образом соединены между собой, образуя трехфазную систему. 
 
Обмотки трех фаз соединены звездой. Начала этих обмоток подключены к трем контактным медным кольцам, укрепленным на валу ротора. Кольца изолированы друг от друга и от вала и вращаются вместе с ротором. 
При вращении колец поверхности их скользят по угольным или медным щеткам, неподвижно укрепленным над кольцами. Обмотка ротора может быть замкнута на какое-либо сопротиление или накоротко, при помощи указаных щеток. 
 

 

 

 

 

Ротор короткозамкнутого  асинхронного двигателя:  
а - устройство, б - обмотка; 1 - сердечник, 2 - проводники, 3 - медные кольца 
 
Двигатели с замкнутым ротором проще и надежнее в эксплуатации, значительно дешевле, чем двигатели с фазным ротором. Однако двигатели с фазным ротором, как мы увидим ниже, обладают лучшими пусковыми и регулировочными свойствами. 
В настоящее время асинхронные двигатели выполняют преимущественно с короткозамкнутым ротором и лишь при больших мощностях и в специальных случаях используют фазную обмотку ротора. 
 
В России производят асинхронные двигатели мощностью от нескольких десятков ватт до 15 000 кВт при напряжениях обмотки статора до 6 кВ.  
Между статором и ротором имеется воздушный зазор, величина которого оказывает существеннее влияние на рабочие свойства двигателя. 
Наряду с важными положительными качествами - простотой конструкции и обслуживания, малой стоимостью - асинхронный двигатель имеет и некоторые недостатки, из которых наиболее существенным является относительно низкий коэффициент мощности (cos ). 
У асинхронного двигателя cos при полной нагрузке может достигать значений 0,85—0,9; при недогрузках двигателя его cos резко уменьшается и при холостом ходе составляет 0,2—0,3. 
 
Низкий коэффициент мощности асинхронного двигателя объясняется большим потреблением реактивной мощности, которая необходима для возбуждения магнитного поля. Магнитный поток в асинхронном двигателе встречает на своем пути воздушный зазор между статором и ротором, который в большой степени увеличивает магнитное сопротивление, а следовательно, и потребляемую двигателем реактивную мощность. 
 
В целях повышения коэффициента мощности асинхронных двигателей воздушный зазор стремятся делать возможно меньшим, доводя его у малых двигателей (порядка 2—5 кВт) до 0,3 мм. В двигателях большой мощности воздушный зазор приходится увеличивать по кон¬структивным соображениям, но все же он не превышает 2—2,5 мм.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Диэлектрики. Электрическая емкость.

 


Материалы, проводящие электрический ток, называются проводниками. В ряде материалов, называемых диэлектриками, электрический ток проводимости не возникает. 
 
У таких материалов электрические заряды молекул прочно связаны внутримолекулярными силами и свободных электронов очень мало. 
К диэлектрикам относятся мрамор, фарфор, слюда, стекло и др. 
 
В молекулах диэлектрика очень трудно отделить отрицательный заряд от положительного, но под действием сил электрического поля внутренние молекулярные заряды упруго смещаются: положительные заряды по направлению поля, а отрицательные - в обратном направлении.  
 
Таким образом, диэлектрик в электрическом поле поляризуется: на поверхности диэлектрика, обращенной к положительно заряженному проводнику, образуется отрицательный заряд - Q, а на противоположной поверхности - положительный заряд +Q. 
 
С устранением внешнего электрического поля эти заряды исчезают.

Система, состоящая  из двух проводников, разделенных диэлектриком, называется конденсатором, а проводники - обкладками конденсатора. 
 
Если два таких проводника соединить с полюсами источника электрической энергии, то между ними (и разделяющем их диэлектрике) создается электрическое поле.  
Положим, что конденсатор, состоящий из двух металлических пластин А и Б, являющихся его обкладками, подключен к полюсам источника тока. 
 
Если напряжение этого источника U, то очевидно, что обкладки конденсатора находятся под таким же напряжением U. 

 
Электрическое поле, возникшее в диэлектрике конденсатора, характеризуется напряженностью. 
 
Пусть расстояние между обкладками конденсатора l. Напряженность электрического поля представляет собой отношение напряжения на обкладках к расстоянию между ними, т. е. E=U/l.  
 
Если напряжение на обкладках конденсатора выражено в вольтах, а расстояние между параллельно расположенными обкладками - в метрах, то напряженность электрического поля в диэлектрике конденсатора выражается в вольтах на метр (В/м). 
 
Чем больше напряжение на обкладках конденсатора, тем больше напряженность поля в его диэлектрике.  
 
Обкладки конденсатора, соединенные с полюсами источника энергии, имеют положительный и отрицательный заряды. 
 
Величины зарядов, равные между собой по абсолютной величине, пропорциональны напряжению U на обкладках конденсатора. 
Значит, если величину заряда на одной из обкладок обозначить буквой Q, то можно написать следующее равенство: Q=CU.  
В этом равенстве величина С является так называемой емкостью конденсатора.  
 
Если заряд Q выражен в кулонах, а напряжение U в вольтах, то емкость выражается в Фарадах.  
 
Емкость конденсатора зависит от обкладок, расстояния между ними и диэлектрической проницаемости.  
Емкость конденсатора тем больше, чем больше площадь S его обкладок и диэлектрическая проницаемость среды, разделяющей их, а также, чем меньше расстояние между обкладками

Пуск в ход асинхронных двигателей 
 
При включении асинхронного двигателя в сеть переменного тока по обмоткам его статора и ротора будут проходить токи, в несколько раз больше номинальных. Это объясняется тем, что при неподвижном роторе вращающееся магнитное поле пересекает его обмотку с большой частотой, равной частоте вращения магнитного поля в пространстве, и индуктирует в этой обмотке большую эдс. Эта эдс создает большой ток в цепи ротора, что вызывает возникновение соответствующего тока и в обмотке статора. 
 
При увеличении частоты вращения ротора скольжение уменьшается, что приводит к уменьшению эдс и тока в обмотке ротора. Это, в свою очередь, вызывает уменьшение тока в обмотке статора. 
Большой пусковой ток нежелателен как для двигателя, так и для источника, от которого двигатель получает энергию. При частых пусках большой ток приводит к резкому повышению температуры обмоток двигателя, что может вызвать преждевременное старение их изоляции.  
В сети при больших токах понижается напряжение, которое оказывает влияние на работу других приемников энергии, включенных в эту же сеть. 
 
Поэтому прямой пуск двигателя непосредственным включением его в сеть допускается только в том случае, когда мощность двигателя, намного меньше мощности источника энергии, питающего сеть. 
 
Схема включения пускового реостата  
в цепь фазного ротора асинхронного двигателя 
 
Если мощность двигателя соизмерима с мощностью источника энергии, то необходимо уменьшить ток, потребляемый этим двигателем при пуске в ход. 
Двигатели с фазным ротором обладают очень хорошими пусковыми свойствами.  
Для уменьшения пускового тока обмотку ротора замыкают на активное сопротивление, называемое пусковым реостатом (изо). 
 
При включении такого сопротивления в цепь обмотки ротора ток в ней уменьшается, а следовательно, уменьшаются токи как в обмотке статора, так и потребляемый двигателем из сети. При этом увеличится активная составляющая тока ротора и, следовательно, вращающий момент, развиваемый двигателем при пуске в ход. 
 
Пусковые реостаты имеют несколько контактов, поэтому можно постепенно уменьшать сопротивление, введенное в цепь обмотки ротора. После достижения ротором нормальной частоты вращения реостат полностью выводится, т. е. обмотку ротора замыкают накоротко. 
 
При нормальной частоте ротора скольжение мало и эдс, индуктируемая в его обмотке, также незначительна. Поэтому никакие добавочные сопротивления в цепи ротора не нужны. 
Пусковые реостаты работают непродолжительное время в процессе разгона двигателя и рассчитываются на кратковременное действие. Если оставить реостат включенным длительное время, то он выйдет из строя. 
 
Двигатели с короткозамкнутым ротором при малой мощности их по сравнению с мощностью источника энергии пускают в ход непосредственным включением в сеть. 
При большой же мощности двигателей пусковой ток уменьшают, понижая приложенное напряжение. Для понижения напряжения на время пуска двигатель включают в сеть через понижающий автотрансформатор или реакторы. При вращении ротора с нормальной частотой вращения двигатель переключают на полное напряжение сети. 
 
Недостатком такого способа пуска двигателя в ход является резкое уменьшение пускового момента. Для уменьшения пускового тока в N раз необходимо приложенное напряжение понизить также в N раз. При этом пусковой момент, пропорциональный квадрату напряжения, уменьшится в N раз. Таким образом, понижение напряжения допустимо при пуске двигателя без нагрузки или при малых нагрузках, когда пусковой момент может быть небольшим. 
 
Схема пуска короткозамкнутого асинхронного двигателя с переключением обмотки статора со звезды на треугольник. 
 
Часто двигатель пускают в ход посредством переключения обмотки статора со звезды на треугольник (изо). В момент пуска обмотку статора соединяют звездой, а после того как двигатель разовьет частоту вращения, близкую к нормальной, ее переключают треугольником.  
При таком способе пуска двигателя в ход пусковой ток в сети уменьшается в три раза по сравнению с пусковым током, который потреблялся бы двигателем, если бы при пуске обмотка статора была соединена треугольником. 
 
Этот способ пуска можно применять для двигателя, обмотка статора которого при питании от сети данного напряжения должна быть соединена треугольником.


Измерительные трансформаторы 
 
Измерительные трансформаторы делятся на трансформаторы напряжения и трансформаторы тока. Их применяют в цепях переменного тока для расширения пределов измерения измерительных приборов и для изоляции этих приборов от токопроводящих частей, находящихся под высоким напряжением. 
 
Трансформаторы напряжения конструктивно представляют собой обычные трансформаторы малой мощности. Первичная обмотка такого трансформатора включается в два линейных провода сети, напряжение которой измеряется или контролируется; во вторичную обмотку включают вольтметр или параллельную обмотку ваттметра, счетчика или другого измерительного прибора. 
 
Коэффициент трансформации трансформатора напряжения выбирают таким, чтобы при номинальном первичном напряжении напряжение вторичной обмотки было 100 В. 
Режим работы трансформатора напряжения подобен режиму холостого хода обычного трансформатора, так как сопротивление вольтметра или параллельной обмотки ваттметра, счетчика и т. п. велико и током во вторичной обмотке можно пренебречь. 
Включение во вторичную обмотку большого числа измерительных приборов нежелательно. Если параллельно вольтметру, включенному но вторичную обмотку трансформатора, подсоединить еще один вольтметр или параллельную обмотку ваттметра, счетчика и т. п., то ток во вторичной обмотке трансформатора увеличится, что вызовет падение напряжения на зажимах вторичной обмотки, и точность показания приборов понизится. 
 
Трансформаторы тока служат для преобразования переменного тока большой величины в ток малой величины и изготовляются таким образом, чтобы при номинальном токе первичной цепи во вторичной обмотке ток был 5 А. 
Первичная обмотка трансформатора тока включается в разрез линейного провода (последовательно с нагрузкой), ток в котором измеряется; вторичная обмотка замкнута на амперметр или на последовательную обмотку ваттметра, счетчика и т. п., т. е. соединена с измерительным прибором, имеющим малое сопротивление. 
 
Режим работы трансформатора тока существенно отличен от режима работы обычного трансформатора. В обычном трансформаторе при изменении нагрузки магнитный поток в сердечнике остается практически неизменным, если постоянно приложенное напряжение. 
Если в обычном трансформаторе уменьшить нагрузку, т. е. силу тока во вторичной обмотке, то и в первичной обмотке сила тока понизится, и если вторичную обмотку разомкнуть, то сила тока в первичной обмотке уменьшится до тока холостого хода I0. 
При работе трансформатора тока его вторичная обмотка замкнута на измерительный прибор с малым сопротивлением и режим работы трансформатора близок к короткому замыканию. Поэтому магнитный поток в магнитопроводе трансформатора мал. 
Если разомкнуть вторичную обмотку трансформатора тока, то тока в этой обмотке ие будет, тогда как в первичной обмотке ток останется неизменным. 
 
Таким образом, при разомкнутой вторичной обмотке трансформатора тока магнитный поток в магнитопроводе, возбужденный током первичной обмотки и не встречающий размагничивающего действия тока вторичной обмотки, окажется очень большим и, следовательно, эдс вторичной обмотки, имеющей большое число витков, достигает величины, опасной для целостности изоляции этой обмотки и для обслуживающего персонала. 
Поэтому при выключении измерительных приборов из вторичной обмотки трансформатора тока эту обмотку необходимо замкнуть накоротко. 
 
Включение большого числа измерительных приборов во вторичную обмотку трансформатора тока снижает точность измерения. 
 
Конструкции трансформаторов тока в зависимости от назначения чрезвычайно разнообразны и делятся на стационарные и переносные. 
 
Схема измерительных трансформаторов:  
a - напряжения, б - тока 

При работе измерительных  трансформаторов напряжения и тока возможен пробой изоляции их первичных  обмоток и, как следствие пробоя, электрическое соединение первичной  обмотки с сердечником или  со вторичной обмоткой. 
 
Для безопасности обслуживания сердечники и вторичные обмотки измерительных трансформаторов заземляются


Информация о работе Принцип действия и устройство генератора постоянного тока