Приемники излучения. Классификация

Автор работы: Пользователь скрыл имя, 25 Апреля 2014 в 14:51, курсовая работа

Краткое описание

Существуют различные определения приемника излучения, однако все они отражают главное свойство приемника - способность обнаруживать наличие излучения путем преобразования его в энергию других видов для последующей регистрации. В иностранной технической литературе это свойство приемника излучения находит выражение в названии - детектор, т. е. обнаружитель.
Таким образом, приемник излучения представляет собой устройство, служащее для восприятия энергии излучения и преобразования ее в энергию других видов с целью последующей регистрации результата этого преобразования, приводящей к обнаружению

Содержание

1.Введение
2.Приемники излучения. Классификация
3.Полупроводниковые приемники излучения
4.Полупроводниковый фотодод
5.Фоторезисторы
5.1.Характеристики фоторезисторов
5.2.Параметры фоторезисторов.
6.Фотоэлектрические приемники излучения
7.Заключение
8.Литература

Прикрепленные файлы: 1 файл

Зарят.doc

— 142.00 Кб (Скачать документ)

Световое сопротивление Rс - сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения. 
Кратность изменения сопротивления KR - отношение темнового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).

Допустимая мощность рассеяния - мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.

Общий ток фоторезистора - ток, состоящий из темнового тока и фототока.

Фототок - ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.

Удельная чувствительность - отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА / (лм ( В)

К0 = Iф / (ФU), (7)

где Iф - фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА; Ф - падающий световой поток, лм; U - напряжение, приложенное к фоторезистору, В.

Интегральная чувствительность - произведение удельной чувствительности на предельное рабочее напряжение Sинт = К0Umax. 
Постоянная времени ?ф - время, в течение которого фототок изменяется на 63%, т. е. в e раз. Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики. 
При включении и выключении света фототок возрастает до максимума (рис. 8 приложения) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени , равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф будет нарастать и спадать во времени по закону 
 
Изготовление фоторезисторов

В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIIIBV. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета - CdS.[1]

 
Применение фоторезисторов

В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике.[1]

6.Фотоэлектрические приемники излучения.

Для увеличения точности фотометрии применяются фотоэлементы, устанавливаемые в фокусе телескопа. Кратко напомним физическую сущность фотоэлектрического эффекта. В металлах и полупроводниках, кроме электронов, связанных с отдельными атомами, имеются свободные электроны, которые могут перемещаться в пределах всей кристаллической решетки. Электрон может выйти из кристаллической решетки, если он приобретет энергию, превышающую определенную пороговую величину W0. Эта величина называется работой выхода. Электрон может по-лучить энергию различными способами, например, поглотив световой квант. Кванты с энергией, большей W0, могут выбивать электроны из поверхности облучаемого материала. Это явление называется внешним фотоэлектрическим эффектом или фотоэлектронной эмиссией. Не каждый квант с энергией, большей W0, выбивает электрон. Процентная доля квантов, выбивающих электроны, называется квантовым выходом. Обычно квантовый выход меньше 50%. Явление внешней фотоэлектронной эмиссии используется в фотоэлементах с внешним фотоэффектом, которые представляют собой простые двухэлектродные вакуумные приборы (112). Один из электродов (отрицательный) называется фотокатодом, другой (положительный) — анодом. При освещении фотокатода из него выбиваются электроны, которые притягиваются анодом, и в цепи фотоэлемента течет ток (фототок), измеряемый достаточно чувствительным прибором. Фототок прямо пропорционален световому потоку, падающему на катод, и эта пропорциональность соблюдается в очень широких пределах. Чувствительность и спектральная характеристика фотокатода практически не меняется со временем. Эти обстоятельства позволяют выполнять фотометрические измерения с помощью фотоэлементов с очень высокой точностью (иногда до 0,1%), недоступной для фотографии. Благодаря высокой точности фотоэлектрическая техника прочно вошла в практику современной астрофизики. Как известно, энергия кванта e = hv. Поэтому фотоэлектрический эффект может вызываться только излучением с частотой, превышающей (8.10) (закон Эйнштейна). Предельная частота n 0 называется красной границей фотоэффекта. Она зависит от материала фотокатода. Чистые металлы имеют большую работу выхода и не годятся для изготовления фотокатодов для длин волн l > 3000 Å, используемых в наземных астрономических наблюдениях и в технике. Поэтому разработаны специальные фотокатоды, имеющие сложную физико-химическую структуру, которая обеспечивает малую работу выхода. Наиболее распространенные типы современных фотокатодов — этосурьмяно-цезиевый, мультищелочной и кислородно-цезиевый. Их спектральные характеристики показаны на 113. Фотокатоды для длин волн, превышающих 12 500 Å, отсутствуют. Из-за малой работы выхода фотокатод эмитирует не только фотоэлектроны, но и термоэлектроны, т. е. такие, которые из-за тепловыхдвижений приобрели энергию, превышающую работу выхода, и смогли покинуть фотокатод. Они образуют термоэлектронный темновой ток, который мешает измерению слабых фототоков. Простые фотоэлементы с внешним фотоэффектом применяются сейчас сравнительно редко. На смену им пришли более сложные фотоэлектрические приемники — фотоумножители (ФЭУ). В этих приборах используется явление вторичной электронной эмиссии: электрон, обладающий достаточной энергией и разогнанный электрическим полем, попав на поверхность с малой работой выхода, может выбить несколько электронов. Таким образом, с помощью вторичной электронной эмиссии можно получить усиление фототока. Между фотокатодом (F) и анодом (A) в ФЭУ (114) имеется некоторое количество вторичноэлектронных эмиттеров — динодов (Д1, Д2 и т. д.). Форма и расположение всех электронов ФЭУ, а также приложенные к ним напряжения таковы, что фотоэлектрон, вырвавшийся из фотокатода, попадает на первый динод и выбивает из него несколько электронов, которые затем попадают на второй динод и выбивают соответственно еще большее количество электронов и т. д. В результате каждый фотоэлектрон приводит к образованию лавины вторичных электронов (до 108-109) на аноде. После фотоумножителя ставится либо прибор, измеряющий средний анодный ток, либо прибор, считающий отдельные импульсы, из которых состоит анодный ток. Поскольку каждый импульс соответствует отдельному фотоэлектрону, последний способ называется методом счета электронов. Так же как и в фотоэлементах, в фотоумножителях имеется фон темнового тока, мешающий измерениям слабых световых потоков. Фотометрические приборы, в которых в качестве приемника света используется фотоэлемент или фотоумножитель, называются электрофотометрами. В последнее время в астрономических наблюдениях все шире применяются преобразователи изображения — электоонно-оптические преобразователи (ЭОП) и телевизионные системы. Электронная линза представляет собой положительно заряженный электрод, который разгоняет электроны до сравнительно большой энергии и заставляет их двигаться по строго определенным траекториям, так что фотоэлектрон, выбитый из какой-либо точки катода, попадает в только ей соответствующую точку экрана, и на экране образуется изображение такое же, как на фотокатоде, только более яркое. Благодаря большому квантовому выходу фотокатодов, ЭОП позволяет в принципе регистрировать изображения с более короткими экспозициями, чем обычная фотография. Особенно большой выигрыш в экспозиции дают ЭОП с кислородно-цезиевыми катодами (из-за низкой чувствительности эмульсий в инфракрасной области спектра). Телевизионные системы с чувствительными телевизионными трубками в принципе также позволяют регистрировать очень слабые изображения, причем может быть получено большое усиление контраста. Однако такие системы более сложны, и в астрономическую практику внедряются медленно. В инфракрасной области спектра (l > 1 мк) для регистрации излучения используются главным образом фотосопротивления — пленочные слои или кристаллы определенных полупроводниковых веществ, концентрация или подвижность носителей заряда в которых возрастает при облучении. Это явление называется фотопроводимостью и может быть использовано для регистрации излучения вплоть до миллиметрового диапазона. Красная граница спектральной характеристики фотосопротивления определяется конкретной природой материала. Фотосопротивления, чувствительные в инфракрасной области спектра, как правило, требуют охлаждения до низкой температуры. Высокая чувствительность в инфракрасной области может быть получена также с помощью некоторых типов болометров, охлаждаемых жидким гелием. Болометры принадлежат к классу тепловых приемников, действие которых основано на увеличении температуры при поглощении излучения. В болометрах используется зависимость электрического сопротивления от температуры. К классу тепловых приемников относятся также термопары, в которых используется термоэлектрический эффект, и оптико-акустические преобразователи (ОАП), в которых излучение поглощается в некотором газовом объеме, нагревает его и расширяет. Термопары и ОАП работают без охлаждения и годятся только для измерения сравнительно больших потоков излучения. Все тепловые приемники имеют перед фотоэлектрическими то преимущество, что их чувствительность в принципе не зависит от длины волны, т. е. они не селективны. В приборах, установленных на искусственных спутниках, для регистрации рентгеновского излучения используются счетчики Гейгера, сцинтилляционные счетчики и фотоумножители с особыми фотокатодами. Счетчики Гейгера представляют собой колбу с двумя электродами, наполненную некоторым газом, ионизующимся под действием рентгеновского излучения, и имеющую прозрачное для него окно. Рентгеновский квант, пройдя через газ, образует пару ион — электрон, они ускоряются в электрическом поле между электродами, сталкиваются с нейтральными молекулами, ионизуют их, и в результате образуется лавина ионов и электронов, которая регистрируется в виде импульса тока. Каждый импульс соответствует одному кванту. Сцинтилляционный счетчик состоит из сцинтиллятора — пластины вещества, которое дает световую вспышку при попадании рентгеновского кванта,— и фотоумножителя, который эту вспышку регистрирует. Разработаны фотоумножители, катоды которых непосредственно воспринимают рентгеновские кванты. В этом случае сцинтиллятор не нужен. Сцинтилляционные счетчики специальных типов используются и для обнаружения гамма-квантов при энергиях меньше 30 Мэв. При энергиях более 30 Мэв гамма-кванты образуют при взаимодействии с веществом электронно-позитронные пары, которые могут регистрироваться ионизационными камерами и ядерными эмульсиями. Если энергия кванта больше 1000 Мэв, то образованная им электронно-позитронная пара вызывает достаточно яркую вспышку при движении в атмосфере, которая может быть обнаружена специально сконструированным наземным телескопом. Эта вспышка объясняется оптическим эффектом, открытым акад. П. А. Черенковым: электрон или позитрон, имеющий скорость большую, чем скорость распространения света в некоторой среде (она всегда меньше, чем скорость света в пустоте), излучает световую энергию. [4]

 

7.Заключение.

Таким образом, приемник излучения представляет собой устройство, служащее для восприятия энергии излучения и преобразования ее в энергию других видов с целью последующей регистрации результата этого преобразования, приводящей к обнаружению. Процесс обнаружения излучения состоит из двух основных этапов: преобразования энергии оптического излучения в другой вид энергии и регистрации преобразованной энергии. Например, в термоэлементе поток излучения вызывает появление электродвижущей силы, которая регистрируется обычным образом (гальванометром); в эвапорографе энергия излучения поглощается и вызывает нагрев и испарение масляной пленки, изменение толщины которой регистрируется интерференционными методами и т. д. Таким образом, приемник излучения представляет собой устройство, служащее для восприятия энергии излучения и преобразования ее в энергию других видов с целью последующей регистрации результата этого преобразования, приводящей к обнаружению. Процесс обнаружения излучения состоит из двух основных этапов: преобразования энергии оптического излучения в другой вид энергии и регистрации преобразованной энергии. Например, в термоэлементе поток излучения вызывает появление электродвижущей силы, которая регистрируется обычным образом (гальванометром); в эвапорографе энергия излучения поглощается и вызывает нагрев и испарение масляной пленки, изменение толщины которой регистрируется интерференционными методами и т. д.[2]

 

 

 

 

 

 

 

 

 

8.Литература

1. Гершунский  Б. С. Основы электроники и микроэлектроники. - К.: Высшая школа. 1989. -423с.

2. Практикум по  полупроводникам и полупроводниковым  приборам; под ред. К. В. Шалимовой М.: Высшая школа. 1968. - 464 с.

3. Федотов Я. А. Приемники  излучения. - М.: Советское радио. 1970. - 591 с.

4.Роках.А.Г.Фотоэлектрические  явления в полупроводниках и  диэлектриках.-Саратов: Издательство Саратовского университета,1984

5.Шалимова К.В. Физика полупроводников- М: Энергия,1976

 

 


Информация о работе Приемники излучения. Классификация