Получение и передача переменного электрического тока

Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 17:19, доклад

Краткое описание

Электрический ток, который через равные промежутки времени изменяется по величине и направлению, называется переменным электрическим током. Почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Широкое применение переменного тока объясняется простотой преобразования его напряжения. Это важно для передачи электрической энергии высокого напряжения на большие расстояния.

Прикрепленные файлы: 1 файл

Переменный ток.docx

— 200.08 Кб (Скачать документ)

Переменный  ток

 

Электрический ток, который  через равные промежутки времени  изменяется по величине и направлению, называется переменным электрическим  током. Почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Широкое применение переменного тока объясняется простотой преобразования его напряжения. Это важно для передачи электрической энергии высокого напряжения на большие расстояния.

 

Переменный электрический  ток характеризуется четырьмя основными  параметрами: периодом, частотой, амплитудой и действующим значением тока. Полный цикл изменений переменного тока по величине и направлению за какое-то определенное время называется периодом переменного тока. Период измеряется в секундах (с).

 

Число периодов, совершаемых  током в секунду, называется частотой переменного тока. Частота измеряется в герцах (Гц). В нашей стране все электростанции вырабатывают электроэнергию переменного тока стандартной частоты — 50 Гц. Этот ток называют током промышленной частоты. Его используют для снабжения электроэнергией промышленных предприятий и для освещения.

 

Амплитудой переменного  тока называют его максимальное значение. Если включить амперметр, предназначенный для измерения силы постоянного тока, в цепь переменного тока, то его стрелка будет дрожать у нулевого деления шкалы, так как она не сможет следовать за быстрыми изменениями (колебаниями) переменного тока.

 

В отличие от сопротивления  проводников постоянному тешу, которое  принято называть омическим, сопротивление  тех же проводников переменному  току называют активным сопротивлением. Трехфазный переменный ток представляет собой сочетание трех обычных однофазных переменных токов одинаковой частоты, сдвинутых по фазе на 1/3 периода относительно друг друга и протекающих по трем проводам. Трехфазный переменный ток по сравнению с однофазным обеспечивает большую экономичность при передаче электроэнергии по проводам на большие расстояния.

Для получения переменного  тока используют генераторы переменного  тока.

 

Генераторы переменного  тока

Электрический ток вырабатывается в генераторах - устройствах, преобразующих  энергию того или иного вида в  электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и т.п. Область применения каждого из перечисленных видов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но не способны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика. Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

В настоящее время имеется много  типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС (в рассмотренной модели это вращающаяся рамка) . Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока Ф=BS через каждый виток. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим. Этим обеспечивается наибольшее значение потока магнитной индукции. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходиться при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем) , расположенным на том же валу. В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Современный генератор электрического тока - это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

 

 

Широкое применение переменного тока в технике  связано с тем, что его можно трансформировать. С помощью специальных устройств — трансформаторов напряжение в цепи переменного тока можно повышать и понижать.

Трансформатор

Назначение  трансформатора.

Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого  напряжения той же частоты.

Трансформаторы  позволяют значительно повысить напряжение, вырабатываемое источниками  переменного тока, установленными на электрических станциях, и осуществить  передачу электроэнергии на дальние  расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные  на фабриках, заводах, в депо и жилых  домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в  системах передачи и распределения  электроэнергии, промышленностью выпускаются  трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для  питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы  используют также для включения  электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Транс-

форматоры бывают однофазные и трехфазные, двух- и многообмоточные.

 

 

 

Принцип действия трансформатора.

Рис. 212. Схема включения однофазного  трансформатора

 

На  рисунке мы видим железный сердечник, на который надеты две катушки. Создадим в одной из катушек электрический ток, присоединив её к генератору. Вторую катушку замкнём на электрическую лампочку. Когда в первой катушке идёт постоянный ток, лампа не горит. Если же ток в первой катушке переменный, то лампа, присоединённая ко второй катушке, где нет никакого генератора, загорается.

Здесь мы имеем дело с тем же явлением электромагнитной индукции, с которым познакомились, когда речь шла о генераторах. Когда в первой катушке идёт переменный ток, то создаваемое им магнитное поле также будет переменным. Таким образом, в этом случае вторая катушка, подобно якорю генератора, находится в переменном магнитном поле. Благодаря этому в нём создаётся электрическое поле и возникает электрический ток.

Две катушки, надетые на общий сердечник, — это простейший трансформатор. Переменный ток в первой катушке (она называется первичной обмоткой трансформатора) создаёт переменное магнитное поле. Переменное магнитное поле вызывает ток во второй катушке (во вторичной обмотке).

Если  увеличивать число витков вторичной  обмотки, то лампочка в нашем опыте  с переменным током будет гореть всё ярче. Если уменьшать число витков,- лампа будет гореть более тускло. Когда число витков во вторичной обмотке больше, чем в первичной, напряжение на её концах больше, чем напряжение, созданное генератором на концах первичной катушки.

Трансформаторы, у которых во вторичной обмотке  больше витков, чем в первичной, называются повышающими. Они позволяют получать более высокие напряжения, чем напряжение, которое создаёт генератор. При этом сила тока во вторичной обмотке оказывается во столько же раз меньше, во сколько напряжение на её концах больше.

Трансформаторы, у которых во вторичной обмотке  меньше витков, чем в первичной, называются понижающими. С помощью понижающих трансформаторов можно получать токи большой силы при низком напряжении.

Рис. 28. Схема передачи электрической энергии переменного  тока

 

Между электростанцией и потребителем электрической энергии — заводом, трамваем или квартирой — протянуты провода. Они обладают значительным сопротивлением. Ведь сопротивление тем больше, чем провод длиннее, а здесь длина проводов измеряется обычно километрами, а то и сотнями километров. Если соединить этими проводами генератор и, скажем, электродвигатель, то лишь незначительная часть энергии, вырабатываемой генератором, дойдёт до электродвигателя. Почти вся она бесполезно растратится на нагревание проводов или, как говорят, будет «потеряна на линии». Чтобы избежать этого, генератор соединяют с первичной обмоткой повышающего трансформатора, а провода, идущие к потребителю, присоединяют к концам вторичной обмотки (рис. 28). В таком случае сила тока в цепи очень мала, а значит, малы и потери энергии даже на длинных проводах. Но в сети создаётся высокое напряжение, опасное для жизни. Стоящий в месте потребления электроэнергии понижающий трансформатор снижает напряжение.

Таким образом, благодаря  трансформаторам можно передавать электрическую энергию с малыми потерями слабым током высокого напряжения, а потреблять её при обычных напряжениях, не требующих особых условий изоляции и не опасных для жизни. Это — одна из основных причин широкого развития электротехники переменных токов.


Информация о работе Получение и передача переменного электрического тока