Общие сведения об электрических машинах

Автор работы: Пользователь скрыл имя, 02 Февраля 2014 в 11:38, доклад

Краткое описание

Электрическая машина – это машина, действие которой основано на использовании явления электромагнитной индукции: преобразует механическую энергию в электрическую (генератор), электрическую энергию в механическую (двигатель), либо электрическую энергию с одними параметрами (напряжением, частотой и др.) в электрическую энергию с другими (напряжением, преобразователь частоты). Действие всякой электрической машины обратимо, однако выпускаются они обычно для определенного режима работы.

Содержание

Оглавление
Что такое электрическая машина 1
Классификация машин 4
Назначение электрических машин 4
Машина постоянного тока 4
Общие сведения о машинах постоянного тока 5
Принцип действия машин постоянного тока 5
Общие сведения о двигателях постоянного тока 5
Общие сведения о генераторах постоянного тока 5
Список используемой литературы 1

Прикрепленные файлы: 1 файл

Общие сведения об электрических машинах.docx

— 114.67 Кб (Скачать документ)

Нефтеюганский индустриальный колледж 
(филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Югорский государственный университет»

 

Специальность: 270802

Предмет: Основы электротехники

 

 

 

 

 

 

Доклад

На тему: Общие сведения об электрических машинах.

 

 

 

 

 

 

 

 

 

 

 

Подготовил: студент группы 2С – 12 Гренадер Роман

Проверил: Гоц Владимир Алексеевич

Оглавление

Что такое электрическая  машина1

Классификация машин4

Назначение электрических  машин4

Машина постоянного  тока4

Общие сведения о машинах  постоянного тока5

Принцип действия машин постоянного  тока5

Общие сведения о двигателях постоянного тока5

Общие сведения о генераторах  постоянного тока5

Список используемой литературы1

 

 

Что такое электрическая  машина?

Электрическая машина –  это машина, действие которой основано на использовании явления электромагнитной индукции: преобразует механическую энергию в электрическую (генератор), электрическую энергию в механическую (двигатель), либо электрическую энергию с одними параметрами (напряжением, частотой и др.) в электрическую энергию с другими (напряжением, преобразователь частоты). Действие всякой электрической машины обратимо, однако выпускаются они обычно для определенного режима работы.

 

Классификация машин.

Электрические машины подразделяются на следующие виды:

  1. Асинхронная машина — электрическая машина переменного тока, в которой частота вращения ротора отличается от частоты вращения магнитного поля в воздушном зазоре на частоту скольжения.
  2. Синхронная машина — электрическая машина переменного тока, в которой частоты вращение ротора и магнитного поля в зазоре равны.
  3. Машина двойного питания  — электрическая машина переменного тока, в которой ротор и статор в общем случае имеют разные частоты питающего тока. В результате ротор вращается с частотой, равной сумме (разности) питающих частот.
  4. Машина постоянного тока — электрическая машина, питаемая постоянным током и имеющая коллектор.
  5. Трансформатор — электрический аппарат  переменного тока (электрический преобразователь), преобразующий электрический ток напряжения одного номинала в электрический ток напряжения другого номинала. Существуют статические и поворотные трансформаторы .
  6. Инвертор на базе электрической машины — как правило, пара электрических машин, соединённых валами, выполняющих преобразование рода тока (постоянный в переменный или наоборот), частоты тока, числа фаз, напряжений.
  7. Вентильный двигатель — электрическая машина постоянного тока, в которой механический коллектор заменён полупроводниковым коммутатором (ПК), возбуждение осуществляется от постоянных магнитов, размещенных на роторе; а статорная обмотка, как в синхронной машине. ПК по сигналам логического устройства поочерёдно, в определённой последовательности, попарно подключает фазы электродвигателя к источнику постоянного тока, создавая вращающееся поле статора, которое, взаимодействуя с полем постоянного магнита ротора, создаёт вращающий момент электродвигателю.
  8. Сельсин — электрическая машина для дистанционной передачи информации об угле поворота.

 

Назначение электрических  машин.

  • Преобразование энергии — основное назначение электрических машин в качестве двигателя или генератора.
  • Преобразование переменного тока в постоянный.
  • Преобразование величины напряжения.
  • Усиление мощности электрических сигналов. В этом случае электрическая машина называется электромашинным усилителем.
  • Повышение коэффициента мощности электрических установок. В этом случае электрическая машина называется синхронным компенсатором. 
  • Дистанционная передача информации (сельсин)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

На примере разберем одну из таких машин:

Машина постоянного тока.

Рисунок (1): 1.Коллектор; 2.Щетки; 3.Якорь; 4.Главный полюс; 5.Катушка  обмотки возбуждения; 6.Корпус; 7.Подшипниковый щит; 8.Вентилятор; 9.Обмотка якоря.

Общие сведения о  машинах постоянного тока.

Общие сведения. Электрические машины постоянного тока могут работать как в режиме генератора, так и в режиме двигателя, т.е. обладают свойством обратимости. В режиме генератора они преобразуют механическую энергию, подводимую к их валу от внешнего двигателя, в электрическую энергию постоянного напряжения, а в режиме двигателя осуществляют обратное преобразование: электрическую энергию постоянного тока преобразуют в механическую энергию, снимаемую с их вала.

Машины постоянного тока были первыми электрическими машинами – в 1838 г. академик Б. С. Якоби применил двигатель постоянного тока для  привода шлюпки. С развитием техники переменного тока (70—80 годы XIX в.) удельный вес машин постоянного тока в общем выпуске электрических машин постепенно уменьшался и в настоящее время преобладающими являются машины переменного тока. Это объясняется более сложной конструкцией машин постоянного тока за счет коллекторно-щеточного узла и, как следствие, их более высокой стоимостью и меньшей надежностью. Вместе с тем у машин постоянного тока есть преимущества и специфические качества, обусловливающие их применение в современной технике. Так, диапазон и плавность регулирования частоты вращения у двигателей постоянного тока значительно шире, чем у двигателей переменного тока.

Генераторы постоянного  тока применяются для питания  различного рода устройств, работающих на постоянном токе, в том числе  электрических двигателей постоянного  тока. Двигатели находят широкое  применение в тех случаях, когда  механизм, приводимый во вращение двигателем, должен иметь широкий и плавный  диапазон регулирования скорости: в  мощных металлорежущих станках, на электрифицированном  транспорте, в автоматике и т. п. Как  генераторы, так и двигатели изготовляются  промышленностью серийно мощностью  от нескольких ватт до сотен киловатт. Машины постоянного тока бывают генератором или двигателем.

Принцип действия машин постоянного тока.

Принцип действия генератора. Простейший генератор можно представить в виде витка, вращающегося в магнитном поле (рис. 1.4, а, б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.

Принцип работы генератора основан  на явлении электромагнитной индукции. Пусть виток приводится во вращение от внешнего приводного двигателя ПД. Проводники активной части витка пересекают магнитное поле и в них по закону электромагнитной индукции наводятся ЭДС eи e2,направление которых определяется по правилу правой руки. При вращении витка по направлению движения часовой стрелки в верхнем проводнике, находящемся под северным полюсом, ЭДС направлена от нас, а в нижнем, находящемся под южным полюсом, – к нам. По ходу витка ЭДС складываются,  результирующая  ЭДС е = е– е2.

Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него – к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя – отрицательным. При повороте витка на 180° проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменяется на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя – с верхней, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т. е. являются простейшим механическим выпрямителем.

Принцип действия двигателя. То же устройство работает в режиме электрического двигателя (рис. 1.5), если к щеткам подвести постоянное напряжение. Под действием напряжения U через щетки, пластины коллектора и виток потечет  ток i. По закону электромагнитной силы (закон Ампера) взаимодействие тока и магнитного поля В создает силу f, которая направлена перпендикулярно i. Направление силы f определяется правилом левой руки (рис. 1.5): на верхний проводник сила действует вправо, на нижний – влево. Эта пара сил создает вращающий момент Мвр, поворачивающий виток по часовой стрелке. При переходе верхнего проводника в зону южного полюса, а нижнего – в зону северного полюса концы проводников и соединенные с ними коллекторные пластины вступают в контакт со щетками другой полярности.

Рис.1.5

Направление тока в проводниках  витка изменяется на противоположное, а направление сил f, момента Мвр и тока во внешней цепи не изменяется. Виток непрерывно будет вращаться в магнитном поле и может приводить во вращение вал рабочего механизма (РМ).

Таким образом, коллектор  в режиме двигателя не только обеспечивает контакт внешней цепи с витком, но и выполняет функцию механического  инвертора, т.е. преобразует постоянный ток во внешней цепи в переменный ток в витке.

Рассмотрение принципа действия показывает, что машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя, т. е. обладает свойством обратимости.

Противодействующий момент и противо-ЭДС. При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток, направление которого совпадает с направлением ЭДС (рис. 1.4,6), взаимодействие тока с магнитным полем полюсов  создает момент М, направленный в рассматриваемом случае против часовой стрелки. Так как приложенный к витку вращающий момент приводного двигателя Мвр направлен по часовой стрелке, то возникающий при работе генератора момент называется противодействующим моментом Мnp. По существу возникновение Мпр — это реакция машины на воздействие внешнего момента Мвр, а физическая природа противодействующего момента та же, что и вращающего момента у двигателя. В установившемся режиме работы генератора между Мвр и Мпр устанавливается равновесие  и Мвр=Мпр.

При работе машины в режиме двигателя проводники якоря пересекают магнитное поле и в них наводится ЭДС (рис. 1.5,б). Ее направление определяется по правилу правой руки. В рассматриваемом случае она направлена против тока и, следовательно, навстречу приложенному напряжению сети U и поэтому называется противо-ЭДС Enp. Физическая природа противо-ЭДС та же, что и ЭДС генератора. В установившемся режиме работы двигателя между Enp и Uустанавливается равновесие и можно считать, что Enp ≈ U .

Таким образом, при работе машины постоянного тока в любом  режиме во вращающихся проводниках  наводится ЭДС Е и возникает момент М, но роль их в разных режимах различная.

 

Общие сведения о  двигателях постоянного тока.

Принцип действия (на примере двигателя параллельного возбуждения).  Если к двигателю подведено напряжение U, то по цепи возбуждения протекает ток Iв, а по цепи якоря – ток Iя. Ток возбуждения создает МДС Fв = Iв Wв, которая возбуждает в машине магнитный поток Фв. Ток якоря, в свою очередь, создает магнитный поток реакции якоря Фя. Результирующий магнитный поток Фрез = Фв +  Фя.

Рис.1.23                                                                Рис. 1.24

В цепи якоря ток  Iя создает падение напряжения Rя Iя. В соответствии с законом электромагнитной силы ЭМС при взаимодействии тока Iя и магнитного потока Фрез создается вращающий момент Мвр.В  установившемся режиме Мвр. = Мпр. Когда проводники якоря пересекают магнитное поле Фрез, в них в соответствии с законом электромагнитной индукции ЭМИ наводится ЭДС, которая направлена против напряжения сети U.

Классификация двигателей. По схеме включения обмоток возбуждения главных полюсов двигатели постоянного тока делятся на двигатели независимого, параллельного, последовательного  и  смешанного возбуждения.

В двигателях независимого возбуждения  обмотка возбуждения питается от отдельного источника постоянного  напряжения. В двигателях параллельного  возбуждения обмотка возбуждения  и обмотка якоря включены параллельно  и питаются от одного источника. В  двигателях последовательного и  смешанного возбуждения есть обмотка  возбуждения, включенная  последовательно с обмоткой якоря. В двигателях малой мощности  поток возбуждения может быть создан с помощью постоянных магнитов. Наибольшее применение находят двигатели параллельного и смешанного возбуждения.

Основные уравнения и величины, характеризующие двигатели. Такими величинами являются: механическая мощность на валу Р2, питающее напряжение U, ток, потребляемый из сети I, ток якоря Iя, ток возбуждения Iв, частота вращения n, электромагнитный момент Мэм. Зависимость между этими величинами  описывается:

Ø  уравнением электромагнитного момента:

Мэм = См Iя Ф;

Ø  уравнением электрического состояния цепи якоря:

U = Епр +  Rя Iя;                                          

Епр = СEnФ;

Ø  уравнением моментов:

Мэм = Мс + Мпот + Мд,

где Мс – момент сопротивления на валу, создаваемый нагрузкой; Мпот – момент потерь, создаваемый всеми видами потерь в двигателе; Мд – динамический момент, создаваемый инерционными силами;

Характеристики двигателей. Важнейшей из характеристик является механическая n (Мс) – зависимость частоты вращения n от момента на валу (далее индекс «с» опускается) при U = const, Iв= const. Она показывает влияние механической нагрузки (момента) на валу двигателя на частоту вращения, что особенно важно знать при выборе и эксплуатации двигателей. Другие характеристики двигателей: регулировочная n (Iв), скоростная n (Iя), рабочие М, Р1, n , I, h(Р2) – здесь подробно не рассматриваются.

Механические характеристики могут быть естественными и искусственными. Под естественными характеристиками понимаются характеристики, снятые при отсутствии в схеме каких-либо дополнительных сопротивлений, например, реостатов в цепях якоря или возбуждения, искусственными – при наличии таких сопротивлений.

Уравнение механической характеристики двигателя.  Подставим вместо Е ее значение в (1.4), тогда

Информация о работе Общие сведения об электрических машинах