Автор работы: Пользователь скрыл имя, 28 Февраля 2012 в 21:03, реферат
Геотермальная энергетика — производство электроэнергии, а также тепловой энергии за счёт энергии, содержащейся в недрах земли.
Преимуществом геотермальной энергетики является ее практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт/ч).
1.Понятие и классификация геотермальных ресурсов…………………………….3
2. Этапы и стадии геологического изучения недр…………………………………5
3.Принципы и методы изучения и оценки геотермальных ресурсов…………….7
4.Геотермальная станция в Беларуси……………………………………………..11
Заключение……………………..……………………………………………………13
Список используемой литературы……………………………………………….14
РЕФЕРАТ
ПО ДИСЦИПЛИНЕ: ОСНОВЫ ЭНЕРГОСБЕРЕЖЕНИЯ
НА ТЕМУ: МЕТОДЫ ИЗУЧЕНИЯ И ОЦЕНКИ ГЕОТЕРМАЛЬНЫХ РЕСУРСОВ
Содержание
1.Понятие и классификация геотермальных ресурсов…………………………….3
2. Этапы и стадии геологического изучения недр…………………………………5
3.Принципы и методы изучения и оценки геотермальных ресурсов…………….7
4.Геотермальная станция в Беларуси……………………………………………..11
Заключение……………………..…………………………
Список используемой литературы……………………………………………….1
1. Понятие и классификация геотермальных ресурсов.
Геотермальная энергетика — производство электроэнергии, а также тепловой энергии за счёт энергии, содержащейся в недрах земли.
Преимуществом геотермальной энергетики является ее практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт/ч).
Источники геотермальной энергии по классификации Международного энергетического агентства делятся на 5 типов:
месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;
источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);
месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;
сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;
магма, представляющая собой нагретые до 1300 °С расплавленные горные породы.
Опыт, накопленный различными странами относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3-5 км обычно превышает 100 °С.
Геотермальные ресурсы - количество теплоты, содержащееся в литосфере или ее участках, до глубины, технически достижимой средствами бурения на прогнозируемый период.
При сопоставлении с традиционными источниками энергии очевидны следующие преимущества геотерм
Однако специфика геотермальных ресурсов включает и ряд недостатков: низкий температурный потенциал теплоносителя, нетранспортабельность, трудности складирования, рассредоточенность источников, ограниченность промышленного опыта.
В настоящее время принято выделять 2 основных класса геотермальных ресурсов – гидро- и петрогеотермальные. Первые пре
Под эксплуатационными запасами (ресурсами) гидрогеотермальной энергии в целом понимаются количества тепла и воды, которые могут быть получены из оцениваемого водоносного горизонта (комплекса) рациональными в технико-экономическом и экологическом отношениях водозаборными сооружениями при заданном режиме их эксплуатации и соответствующем качестве теплоносителя (температура, химический и газовый состав) в течение всего расчетного срока эксплуатации. Эксплуатационные запасы тепла выражаются либо в единицах мощности, либо в тоннах топлива (условного) в год, эксплуатационные запасы термальных вод имеют размерность объемного расходного расхода для воды (л/с, м3/сут) или весового расхода для пара и пароводяных смесей (кг/с,т/сут).
Наиболее полная классификация ресурсов и запасов геотермальной энергии разработана Э.И.Богуславским.
За нижний предел температуры термальных вод целесообразно принять 20º С с учетом возможного применения тепловых насосов и наличия во многих отраслях народного хозяйства потребности в субтермальных теплоносителях с температурами 20-40ºС.
Далее по видам возможного теплоэнергетического использования могут быть выделены следующие классы термальных вод.
Воды низкопотенциальные (с температурой 20-100º С), в составе которых целесообразно выделение подкласса вод с температурами 20-40º С. Эти воды могут потребляться для теплотехнических нужд в основном с применением тепловых насосов. Также их можно эффективно использовать для оттаивания мерзлых пород и промывки россыпей, интенсификации рыболовства, обогрева открытого грунта, закачки в нефтеносные пласты, технологических процессов, требующих низкопотенциальных теплоносителей. Основное назначение – теплоснабжение, промышленных, сельскохозяйственных и коммунально-бытовых объектов.
Среднепотенциальные (100-150º С) воды могут эффективно использоваться как для теплоснабжения промышленных, сельскохозяйственных и коммунально-бытовых объектов, так и для выработки электроэнергии с применением промежуточных рабочих тел.
Высокопотенциальные (более 150º С) воды могут эффективно применяться для выработки электроэнергии по прямому циклу. В составе таких вод целесообразно выделять перегретые воды (150-250º С), высокоперегретые (250-350º С) и предельно перегретые (более 350º С).
Качество термальных вод, предназначенных для лечебного использования (по температуре, минерализации, ионному и газовому составу, газонасыщенности, содержанию в водах фармакологических активных микроэлементов, радиоактивности, рН) должно оцениваться в соответствии со специальными требованиями к изучению и классификациями минеральных лечебных вод.
2. Этапы и стадии изучения геотермальных ресурсов недр.
Источниками геотермальных ресурсов недр являются:
- подземные геотермальные воды;
- тепло горного массива недр.
Геотермальные ресурсы недр могут быть использованы для:
- получения электроэнергии;
- горячего водоснабжения;
- теплоснабжения жилых и производственных помещений;
- лечебных, оздоровительных и иных целей, обусловленных ценностью, полезностью и иными характеристиками геотермальных ресурсов недр.
Основными этапами изучения геотермальных ресурсов недр являются:
- региональное геологическое изучение недр;
- поиск геотермальных ресурсов недр и оценка месторождения;
- разведка геотермальных ресурсов недр (включая пробную эксплуатацию месторождений углеводородов или отдельных буровых скважин), подготовка месторождения для разработки.
1) Региональное геологическое изучение недр проводится по следующим стадиям:
- мелкомасштабные геологосъемочные работы;
- среднемасштабные геологосъемочные работы;
- крупномасштабные геологосъемочные работы.
2) Поиск геотермальных ресурсов недр и оценка месторождения проводятся в целях выявления и предварительной оценки месторождения, пригодного для разработки. Поиск геотермальных ресурсов недр и оценка месторождения проводятся по следующим стадиям:
- поисковые работы;
- оценка месторождения.
3) Разведка геотермальных ресурсов недр и подготовка месторождения для разработки проводятся в целях получения сведений о явлениях и процессах, происходящих в недрах, о геологическом строении месторождения, технологических и иных особенностях месторождения, качестве и количестве находящихся в нем геотермальных ресурсов недр, об условиях разработки месторождения, позволяющих осуществить геолого-экономическую оценку этого месторождения. Разведка геотермальных ресурсов недр и подготовка месторождения для разработки проводятся по следующим стадиям:
-предварительная разведка геотермальных ресурсов недр, проводимая в целях получения достоверных данных для предварительной оценки качества и количества выявленных запасов геотермальных ресурсов недр, получения экономически обоснованной промышленной оценки месторождения, обоснования целесообразности финансирования дальнейших геологоразведочных работ;
-детальная разведка геотермальных ресурсов недр, проводимая в целях подготовки месторождения для разработки. По результатам детальной разведки геотермальных ресурсов недр разрабатываются постоянные разведочные кондиции геотермальных ресурсов недр, по которым проводится подсчет запасов геотермальных ресурсов недр;
-доразведка геотермальных ресурсов недр, проводимая на детально разведанном, но не переданном в разработку месторождении в случае недостаточной изученности этого месторождения, а также на разрабатываемом месторождении при необходимости дополнительного его изучения в связи с пересмотром объемов и технологии добычи, первичной обработки (очистки, обогащения) использования геотермальных ресурсов недр;
-эксплуатационная разведка геотермальных ресурсов недр, проводимая в процессе разработки месторождения для уточнения количества и качества запасов геотермальных ресурсов недр, получения иной геологической информации, необходимой для составления ежегодных планов развития горных работ.
3. Принципы и методы изучения и оценки геотермальных ресурсов.
Важным в цикле задач широко вовлечения гидрогеотермальных ресурсов в топливно-энергетическом балансе страны является повышение эффективности поисково-разведочных работ, что, в свою очередь, возможно при условии постоянного совершенствования принципов и методологических основ их планирования и проведения. Методика планирования поисково-разведочных работ на термальные воды, равно как и на другие виды полезных ископаемых, должна исходить изосновополагающего принципа эколого-экономической целесообразности. Эффективная его реализация возможна при соблюдении ведущих общих принциповизучения месторождений: полноты исследования, последовательного приближения, равной достоверности, минимизации общественно необходимых трудовых, материальных и временных затрат.
Одним из важнейших является требование стадийности поисково-разведочных работ, позволяющее при минимуме общественно необходимых затрат производить поэтапную геолого-экономическую оценку месторождений и участков.
Конечной задачей всего цикла исследований является обнаружение, геолого-экономическая и экологическая оценка месторождений естественных теплоносителей, т.е. установление величины их эксплуатационных запасов и теплоэнергетического потенциала, а также оценка условий и укрупненных технико-экономических показателей разработки продуктивных водоносных горизонтов, комплексов или трещинных зон.
При изучении геотермальных ресурсов используется достаточно широкий комплекс методов, который определяется в каждом конкретном случае сложностью и особенностями изучаемого объекта и степенью его изученности в предшествующий период.
В общем случае основными видами полевых работ являются: геолого-гидрологическая съемка, специальные съемки (геотермическая, газогидрохимическая и др.), рекогносцировачное обследование участка разведки, бурение и термогидродинамические исследования скважин, геофизические и гидрологические работы, стационарные наблюдения за естественным и нарушенным режимами термальных и холодных вод, обследование ранее пробуренных глубоких скважин и действующих водозаборных сооружений, отбор проб воды и кернового материала, специальные виды исследований (геофизические, гидрогеохимические, геотермические, изотопные, ядерно-физические и др.).
Информация о работе Методы изучения и оценки геотермальных ресурсов