Автор работы: Пользователь скрыл имя, 26 Мая 2013 в 14:58, реферат
Магнитные материалы подразделяют на магнитомягкие, магнитотвердые и материалы специализированного назначения.
К магнитомягким относят материалы с малой коэрцетивной силой (Нс < 800 А/м) и высокой магнитной проницаемостью. Они намагничиваются до насыщения в любых магнитных полях, обладают узкой петлей гистерезиса и малыми потерями на перемагничивание. Их используют в качестве сердечников дросселей, трансформаторов, электромагнитов и т.п.
К магнитотвердым относят материалы с большой коэрцитивной силой (Нс > 4кА/м). Они перемагничиваются в очень сильных магнитных полях и служат в основном для изготовления постоянных магнитов.
МАГНИТНЫЕ МАТЕРИАЛЫ
1. Классификация магнитных материалов
Магнитные материалы подразделяют на магнитомягкие, магнитотвердые и материалы специализированного назначения.
К магнитомягким относят материалы с малой коэрцетивной силой (Нс < 800 А/м) и высокой магнитной проницаемостью. Они намагничиваются до насыщения в любых магнитных полях, обладают узкой петлей гистерезиса и малыми потерями на перемагничивание. Их используют в качестве сердечников дросселей, трансформаторов, электромагнитов и т.п.
К магнитотвердым относят
материалы с большой
Среди материалов специализированного
назначения в радиоэлектронике применяются
материалы с прямоугольной
2. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей
Магнитомягкие материалы должны обладать высокой магнитной проницаемостью, малой коэрцитивной силой, большой индукцией насыщения, малыми потерями на перемагничивание. Магнитные свойства материалов должны мало зависеть от механических напряжений, в результате действия которых сильно меняется mнач , mмакс, Нс. Магнитные свойства после механической обработки восстанавливают термообработкой(обжигом). В некоторых случаях важными являются температурная и временная стабильность, линейность кривой намагничивания и др.
Этим требованием наиболее полно удовлетворяют железо и его сплавы. Железо - это типичный магнитомягкий материал, магнитные свойства которого существенно зависят от содержания примесей, структуры (особенно величины зерна - чем крупнее зерна, тем выше магнитные свойства).
Вследствие низкого удельного сопротивления железо используют для изготовления изделий, которые работают в постоянных магнитных полях. Технически чистое железо применяется для получения почти всех ферромагнитных сплавов.
Сталь электротехническая является основным магнитомягким материалом и представляет собой сплавы железа и кремния (до 4,5%). Добавки кремния повышают удельное сопротивление, увеличивают mн и mmax, уменьшают Нс, потери на гистерезис, константы магнитной анизотропии и магнитострикции, повышают стабильность магнитных свойств во времени, но вместе с тем увеличивают хрупкость и твердость стали. Свойства стали значительно улучшаются в результате образования магнитной текстуры при ее холодной прокатке и последующем отжиге в водороде. Вдоль направления прокатки наблюдается более высокое значение магнитной проницаемости и меньше потери на гистерезис. Текстурированные стали используются при изготовлении ленточных сердечников.
В этом случае магнитный
поток полностью проходит вдоль
направления легкого
Пермаллои - железоникелевые
сплавы, обладающие большой магнитной
проницаемостью в области слабых
полей и очень маленькой
Большие значения mн и mмакс пермаллоя объясняются небольшими величинами магнитной апизотропии и магнитострикции. Это облегчает поворот магнитных моментов из направления легкого намагничивания в направлении поля и не вызывает механических напряжений, которые затрудняют смещение доменных границ под воздействием слабого поля. Магнитная проницаемость пермаллоев сильно снижается с увеличением частоты(из-за влияния вихревых токов) и напряженности подмагничивающего (постоянного) поля. Для увеличения удельного сопротивления, улучшения магнитных характеристик и их стабильности в диапазоне напряженностей магнитного поля и температур, повышения механической прочности и обрабатываемости в пермаллой добавляют легирующие элементы - молибден, хром, кремний, марганец, медь.
Пермаллой очень чувствителен к механическим воздействиям, поэтому при изготовлении деталей из него необходимо избегать ударов, рихтовки и т.п. После всех механических операций производят термообработку в вакууме или в атмосфере водорода.
Пермаллой используется для
изготовления магнитных экранов, сердечников
малогабаритных и импульсных трансформаторов,
сердечников катушек
Альсиферы - тройные сплавы железа с кремнием и алюминием. Оптимальный состав альсифера 9.5% Si, 5.6 % Al, остальное Fe. Такой сплав отличается твердостью и хрупкостью. Свойства альсифера (mн = 3500, mмакс = 117000, Hc = 1.8 A/м) не уступают свойствам высоконикелевого пермаллоя. Изделия из альсифера - магнитные экраны, корпуса приборов и т.п. изготавливаются методом литья с толщиной стенок не менее 2 - 3 мм в виду хрупкости сплава. Его можно размалывать в порошок и использовать для изготовления высокочастотных прессованных сердечников.
3. Ферриты и магнитодиэлектрики
Ферриты - химические соединения
окиси железа Fe2О3 с оксидами одного
или нескольких двухвалентных металлов,
имеющих общую формулу МеО×
Ферриты получают в виде
керамики и монокристаллов. Ферритовая
керамика не содержит стекловидной фазы.
Изделия из ферритов получают методом
спекания спрессованной массы
Технические ферриты представляют собой раствор магнитного и немагнитного ферритов. Ферриты для радиочастот делятся на две группы: никель-цинковые (NiO-ZnO-Fe2O3) и марганец-цинковый (MnO-ZnO-Fe2O3). Цинковые ферриты добавляют в магнитные ферриты для увеличения магнитной проницаемости и уменьшения коэрцитивной силы, но это приводит к снижению температурной стабильности магнитных свойств.
Значения величин mн и Hc определяется составом и структурой материала. Микроскопические поры, участки с дефектной кристаллической решеткой и др. мешают свободному перемещению доменных границ и являются причиной уменьшения магнитной проницаемости. С увеличением размера кристаллических зерен возрастает mн.
В слабых переменных магнитных полях ферриты обладают незначительными потерями на вихревые токи и гистерезис. Поэтому значение тангенса угла потерь tgd на высоких частотах в основном определяется магнитными потерями, обусловленными релаксационными и резонансными явлениями. Частота, при которой начинается резкое возрастание tgd называется критической fкр. Обычно fкр - это частота, при которой tgd = 0.1.
Инерционность смещения доменных границ, которая проявляется на высоких частотах приводит также к снижению магнитной проницаемости ферритов. Частоту fгр , при которой mн уменьшается до 0.7 от ее значения в постоянном магнитном поле называют граничной. Как правило, fкр < fгр.
Марганец - цинковые ферриты в области частот до 1 МГц обладают лучшими магнитными свойствами, чем никель - цинковые. У них меньший относительный тангенс угла потерь - tgd/mн, более высокая индукция насыщения и температура Кюри. Однако никель-цинковые ферриты обладают более высоким удельным сопротивлением и лучшими частотными свойствами. Чем больше mн, тем при более низких частотах наблюдается ее снижение. Ферриты с большим значением mэфф обладают большим значением tgd и меньшим fкр .
Во избежание ухудшения магнитных характеристик, ферриты следует оберегать от механических нагрузок.
Маркировка магнито-мягких ферритов следующая. На первом месте стоит численное значение mн, следующее за ним буквы Н и В означают соответственно низкочастотный (fкр = 0.1-50МГц) или высокочастотный (fкр = 50 - 600МГц) материал, стоящая далее буква М означает марганец-цинковый, большая Н - никель-цинковый, литий - цинковый и т.д. ферриты. Буква С означает, что феррит применяется в области сильных полей, Н - контурах, перестраиваемых подмагничиванием.
По электрическим свойствам
ферриты относятся к
s=s0 exp [-Э0/кТ],
где s0 - постоянная величина для данного материала;
Э0 - энергия активации электропроводности (Э0 = 0.1 - 0.5 ЭВ).
Концентрация двухвалентных ионов Fe2+ зависит от состава феррита и режима его обжига. Для снижения концентрации Fe2+ вводят различные добавки .
Процессы поляризации ферритов и диэлектрические потери определяются дрейфом слабосвязанных электронов под действием электрического поля. С ростом частоты поля уменьшается число электронов, которые участвует в дрейфе, и уменьшается расстояние, на которое они смещаются, и соответственно снижается поляризованность. Например на частотах ниже 1000 Гц у марганец-цинковых ферритов величина e ~ 100000, а с увеличением частоты e резко падает до значения порядка 100. Частотные характеристики диэлектрических потерь имеют максимум.
Магнитомягкие ферриты применяются в качестве сердечников контурных катушек постоянной и переменной индуктивности, сердечников импульсных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают стержневые магнитные антенны, индуктивные линии задержки и др. Монокристаллы магнитомягких ферритов применяются при изготовлении магнитных головок записи и воспроизведения сигнала звукового и видеодиапазонов в магнитофонах, т.к. они обладают высоким удельным сопротивлением (что важно для уменьшения потерь) и большей твердостью по сравнению с металлическими.
Магнитодиэлектрики - это композиционные магнитомягкие материалы, состоящие из ферромагнетика и диэлектрика, применяемого в качестве связующего электроизоляционного материала. Основа должна обладать высокими магнитными свойствами, а связка - способностью образовывать между зернами сплошную электроизоляционную пленку одинаковой толщины. В качестве основы применяют карбонильное железо, альсифер, молибденовый пермаллой. Изолирующей связкой служат фенолформоальдегидные смолы, полистирол, стекло и др.
Суммарные потери мощности в магнитодиэлектрике определяются потерями на вихревые токи, последействие, гистерезис и диэлектрическими потерями. С уменьшением размера частиц ферромагнетика потери снижаются, особенно обусловленные вихревыми токами.
Магнитная проницаемость магнитодиэлектриков (mн = 10 - 250) ниже магнитной проницаемости монолитных ферромагнетиков. Это связанно с тем, что изолированные друг от друга ферромагнитные частицы создают внутреннее поле, направленное навстречу внешнему, и слабо выражен механизм намагничивания за счет смещения доменных границ, определяющий значение mн.
Из-за сильного влияния размагничивающего фактора магнитодиэлектрики имеют близкую к линейной зависимость индукции от напряженности магнитного поля и характеризуются незначительными потерями на гистерезис.
Достоинства магнитодиэлектриков: малые удельные потери энергии, слабая зависимость параметров от температуры, времени и напряженности магнитного поля, постоянство магнитной проницаемости в диапазоне частот, а недостаток - сравнительно малая начальная магнитная проницаемость.
Прессованные сердечники из магнитодиэлектриков применяются в катушках индуктивности контуров радиоприемных устройств, генераторов, фильтров и т.д.
Сердечники на основе карбонильного
железа обладают высокой стабильностью,
малыми потерями, положительным температурным
коэффициентом магнитной
Промышленность выпускает два класса карбонильного железа: Р (марки Р-10, Р-20, Р-100) - для радиоаппаратуры и Пс - для проводной связи. Цифры указывают максимальную рабочую частоту в МГц.
Альсифер обладает невысокой стоимостью. Его температурный коэффициент магнитной проницаемости зависит от содержания алюминия и кремния и может быть положительным, отрицательным или равным нулю.
4. Магнитные материалы специального назначения
К магнитным материалам специального назначения относят магнитные материалы с прямоугольной петлей гистерезиса, СВЧ ферриты, магнитострикционные материалы.
Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, аппаратуре связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, которые соответствуют различным направлениям магнитной индукции. Это свойство используется для хранения и переработки двоичной информации.