Автор работы: Пользователь скрыл имя, 14 Января 2014 в 19:08, курс лекций
Работа содержит курс лекций по "Основной физике".
Величина р в формуле (30.6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела), величина rv2/2 — динамическим давлением. Как уже указывалось выше (см. § 28), величина rgh представляет собой гидростатическое давление.
Для горизонтальной трубки тока (h1 =h2) выражение (30.6) принимает вид
(30.7)
где p+rv2/2 называется полным давлением.
Вязкость (внутреннее трение) — это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой.
Единица вязкости — паскаль-секунда (Па×с): 1 Па×с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения 1 Н на 1 м2 поверхности касания слоев (1 Па×с= 1 Н×с/м2).
Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).
6 – лекция
Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д.
Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам: 1) колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; 2) различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний.
Гармонические колебания величины s описываются уравнением типа
(1)
где А — максимальное значение колеблющейся величины, называемое амплитудой колебания, w0 — круговая (циклическая) частота, j — начальная фаза колебания в момент времени t = 0, (w0t + j) — фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до - 1, то s может принимать значения от + А до - А.
Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение 2p, т. е.
откуда
(2)
Величина, обратная периоду колебаний,
(3)
т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (2) и (3), получим
Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, при которой за 1 с совершается один цикл процесса.
Так
как траектория
Явление
резкого возрастания амплитуды
вынужденных колебаний при
частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к ча
стоте, равной или близкой собственной частоте колебательной системы, называется
резонансом (соответственно механическим или электрическим).
Процесс
распространения колебаний в
сплошной среде называется волн
Среди разнообразных
волн, встречающихся в природе
и технике, выделяются
Продольные волны могут возбуждаться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут возбуждаться в среде, в которой возникают упругие силы при деформации сдвига, т. е. в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.
Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.
Геометрическое
место точек, до которых
Распространение волн в однород
волновым уравнением — дифференциальным уравнением в частных производных
или
Эффектом Доплера* называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. Например, из опыта известно, что тон гудка поезда повышается по мере его приближения к платформе и понижается при удалении, т. е. движение источника колебаний (гудка) относительно приемника (уха) изменяет частоту принимаемых колебаний.
По своей природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука (см. § 158). Однако ультразвук, обладая высокими частотами (n>20 кГц) и, следовательно, малыми длинами волн, характеризуется особыми свойствами, что позволяет выделить его в отдельный класс явлений. Из-за малых длин волн ультразвуковые волны, как и свет, могут быть получены в виде строго направленных пучков. Для генерации ультразвука используются в основном два явления. Обратный пьезоэлектрический эффект (см. также § 91) — это возникновение деформации в вырезанной определенным образом кварцевой пластинке (в последнее время вместо кварца применяется титанат бария) под действием электрического поля.
Магнитострикция — это возникновение деформации в ферромагнетиках под действием магнитного поля. Поместив ферромагнитный стержень (например, из никеля или железа) в быстропеременное магнитное поле, возбуждают его механические колебания, амплитуда которых максимальна в случае резонанса
Если пропускать ультразвуковой сигнал через исследуемую деталь, то можно обнаружить в ней дефекты по характерному рассеянию пучка и по появлению ультразвуковой тени. На этом принципе создана целая отрасль техники — ультразвуковая дефектоскопия, начало которой положено С. Я. Соколовым (1897—1957). Применение ультразвука легло также в основу новой области акустики — акустоэлектроники, позволяющей на ее основе разрабатывать приборы для обработки сигнальной информации в микрорадиоэлектронике.
7 – лекция
Статистический и термодинамический методы исследования. Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетнческнй) и термодинамический. Первый лежит в основе молекулярной физики, второй — термодинамики.
Термодинамика имеет дело с термодинамической системой — совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинамического метода — определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) — совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и удельный объем.
Температура — одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура — физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы — термодинамическую и Международную практическую, градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С). В Международной практической шкале температура замерзания и кипения воды при давлении 1,013×105 Па соответственно 0 и 100°С (реперные точки).
В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой считают, что:
собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;
между молекулами газа отсутствуют силы взаимодействия;
столкновения молекул газа между собой и со стенками сосуда абсолютно упругие
Процесс, протекающий при постоянном давлении, называется изобарным.
Процесс, протекающий при постоянном объеме, называется изохорным.
(( объем V1, имеет давление р1 и находится при температуре T1. ))
(42.3)
Выражение (42.3) является уравнением Клапейрона, в котором В — газовая постоянная, различная для разных газов.
Русский
ученый Д. И. Менделеев (1834—
(42.4)
удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона — Менделеева.
От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона — Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем Vm, то при тех же условиях масса т газа займет объем V= (т/М)Vm, где М — молярная масса (масса одного моля вещества). Единица молярной массы — килограмм на моль (кг/моль). Уравнение Клапейрона — Менделеева для массы т газа
(42.5)
где n =m/M — количество вещества.
Лекция -8
При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящиехся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что силовые поля на газ не действуют.
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале Функция f(v) определяет относительное число молекул dN (v)/N, скорости которых лежат в интервале от v до v + dv, т. е.
При выводе основного уравнения молекулярно-кинетической теории газов и максвелловского распределения молекул по скоростям предполагалось, что на молекулы газа внешние силы не действуют, поэтому молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул — с другой, приводят к некоторому стационарному состоянию газа, при котором давление газа с высотой убывает.
Барометрическая формулой -позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти высоту: Так как высоты обозначаются относительно уровня моря, где давление считается нормальным, то выражение (45.2) может быть записано в виде
(45.3)
где р — давление на высоте h.
Прибор для определения высоты над земной поверхностью называется высотомером (или альтиметром).
Лекция -9
Важной характеристикой термодинамической системы является ее внутренняя энергия U — энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.
Внутренняя энергия — однозначная функция термодинамического состояния системы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это означает, что при переходе системы из одного состояния в другое изменение внутренней энергии определяется только разностью значений внутренней энергии этих состояний и не зависит от пути перехода.
Удельная теплоемкость вещества — величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К:
Единила удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг × К)).
Молярная теплоемкость—
(53.1)
где n=m/М—количество вещества.
Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль × К)).
Удельная теплоемкость с связана с молярной Сm, соотношением
(53.2)
где М — молярная масса вещества.
Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой.
Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среда и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.
Лекция – 10
К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномерными явлениями переноса .
1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.