Энергосбережение технологий

Автор работы: Пользователь скрыл имя, 26 Октября 2015 в 09:38, реферат

Краткое описание

В последнее двадцатилетие энергетика обеспечивала рост благосостояния в мире примерно в равных долях за счет увеличения производства энергоресурсов и улучшения их использования и в развитых странах меры по энергосбережению давала 60-65% экономического роста. В результате энергоемкость национального дохода уменьшилась за этот период в мире на 18% и в развитых странах – на 21-27%.

Содержание

ВВЕДЕНИЕ

1. АКТУАЛЬНОСТЬ ЭНЕРГОСБЕРЕЖЕНИЯ В РК НА СОВРЕМЕННОМ ЭТАПЕ

2.

3. ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ

ЗАКЛЮЧЕНИЕ

Прикрепленные файлы: 1 файл

пояснилка.doc

— 214.50 Кб (Скачать документ)

По оценкам специалистов, в Казахстане более трети всех энергоресурсов страны расходуется на отопление жилых, офисных и производственных зданий. Поэтому все вышеперечисленные технологии и методы энергосбережения будут малоэффективны без борьбы с непродуктивными потерями тепла.

Какими же путями можно повысить энергоэффективность в коммунальной сфере? По мнению специалистов компании ROCKWOOL, мирового лидера в области производства негорючей теплоизоляции, следует выделить три основных направления энергосбережения.

Во-первых, это снижение потерь на этапе выработки и транспортировки тепла - то есть повышение эффективности работы ТЭС, модернизация ЦТП с заменой неэкономичного оборудования, применение долговечных теплоизоляционных материалов при прокладке и модернизации тепловых сетей.

Во-вторых, повышение энергоэффективности зданий за счет комплексного применения теплоизоляционных решений для наружных ограждающих конструкций (в первую очередь, фасадов и кровель). В частности, штукатурные системы утепления фасадов ROCKFACADE позволяют сократить теплопотери через внешние стены не менее чем в два раза.

И, в-третьих, использование радиаторов отопления с автоматической регуляцией и систем вентиляции с функции рекуперации тепла.

В последние годы все энергоэффективные технологии объединяются в концепцию так называемого пассивного дома, то есть жилища, максимально дружелюбного окружающей среде. В Западной Европе сейчас строятся пассивные дома с энергопотреблением не более 15 Квт, ч/м3 год, что более чем в 10 раз экономичнее типовой отечественной "хрущевки". Можно сказать, что такие здания - это будущее мирового строительства, ведь они фактически отапливаются за счет тепла, выделяемого людьми и электроприборами.

Таким образом, энергосберегающие технологии позволяют решить сразу несколько задач: сэкономить существенную часть энергоресурсов, решить проблемы отечественного ЖКХ, повысить эффективность производства и уменьшить нагрузку на окружающую среду.

 

Рассмотрим в качестве примеров несколько энергосберегающих технологий:

Энергосберегающие материалы

 

Минераловатные материалы – это теплоизоляционные материалы, которые изготовлены из камня и шлаков. Данные материалы представляют собой вату, сырьем для которой служат базальтовые породы, известняк, доломит и прочие. Шлаковату производят из отработки изделий цветной и черной металлургии. Данные материалы обладают рядом неоспоримых качеств – высокая тепло и звукоизоляция, устойчивость к воздействию влаги, тепла, жидкостей. Они негорючие, легки, экологичны. Монтаж таких материалов довольно прост, так как они легко поддаются изменению форм и размеров. Материалы на основе минеральной ваты используются в противопожарных системах.

Данные изделия часто используются при создании фасадных систем утепления как обычная мокрая штукатурка, а так же могут служить в качестве навесного теплоизоляционного слоя в фасадах и стенах. Применяются минеральноватные материалы при утеплении как внутренних, так и внешних стен.

Материалы для теплоизоляции из стекловаты имеют схожие свойства с минералованными изделиями, но имеется и ряд различий. Из-за того, что волокна стекла более длинные и толстые, стекловата более упругая и прочная, она легко поддается деформации и принимает более ощутимые формы. Данный вид изоляции так же обладает высокими звукоизоляционными свойствами. Изделия из стекловолокна не подвержены влиянию агрессивных сред, химических веществ и микроорганизмов, поэтому срок их службы практически неограничен. Стекловата так же негорюча. Стекловата хорошо подойдет для внутреннего утепления любых конструкций.

Стекловолокно это более упругий и эластичный материал, чем стекловата. Он так же обладает всеми положительными качествами стекловаты. На основе стекловолокна был создан утеплительный материал Izover KT11, который может быть использован для широкого применения в различных типах зданий. Данным материалом можно утеплять как кирпичные и деревянные, так и бетонные стены. Упаковка данного материала позволяет его транспортировку и хранения без особых проблем.

Еще одним современным теплоизоляционным материалом является пенополистирол экструдированный. Плиты из пенополистирола обладают низкой теплопроводностью, причем довольно высокой плотностью. Данный факт позволяет применять этот материал не только в качестве утеплителя, но и как конструктивный материал, из которого может быть составлены часть стены или потолка. Так же пенополистирол обладает низкой гигроскопичностью, то есть не впитывает влагу.

Пенополистирол, который выпускается под торговой маркой URSA, трудновоспламеняем и обладает хорошими звукоизоляционными качествами.

Вспененный полиэтилен используется для тепло-, гидро - и звукоизоляции строительных и промышленных объектов. Продукция выпускается в виде рулонов, матов, жгутов и полых труб стандартных толщин и диаметров. Например, изоляция для труб Стенофлекс-400 (Россия) и Тубекс (Чехия) представляет собой оболочки с продольным разрезом, которые одеваются поверх труб и склеиваются специальным скотчем, клеем или соединяются скобами. Эти материалы легко режутся, поэтому с помощью специальных шаблонов можно, даже не имея специальных навыков, без особого труда сделать изоляцию на колена, вентили, ответвления. Пенополиэтилены имеют хорошие показатели теплопроводности – 0,04 Вт/(м*К), при температуре + 25°С.

По группе горючести они относятся к группе Г2, т.е. умеренногорючий . Сопротивление диффузии пара (или паропроницаемость) – 4600, линейная температурная усадка - не более 1,5%.

Благодаря закрытой структуре ячеек, материал не боится воды: водопоглощение - менее 0,8% после 7 суток нахождения в воде. Вспененный полиэтилен обладает химической стойкостью к маслам, строительным материалам, биологически не разлагается. Рабочие температуры этой изоляции – 50°С + 90°С, срок службы достигает 25 лет.

Такая изоляция называется "отражающей". Фольгированные материалы не только позволяют облачить инженерные коммуникации в "эстетичную упаковку", но и предотвратить тепловые потери, увеличить срок службы оборудования.

Основное отличие изоляции из вспененного каучука - это расширенный температурный диапазон (-200°С + 175°С), более высокие показатели сопротивления диффузии пара (7000, а для некоторых модификаций - выше 10000) и четкое разделение типов изоляции для конкретно выполняемых задач: от криогенных установок до защиты паропроводов с температурой до + 175°С. Показатель теплопроводности синтетического каучука - 0,036 Вт/м*К при 0°С. Немаловажно, что данный тип изоляции имеет сертификат горючести Г1. Толщина стенок трубной изоляции из вспененного каучука представлена более широкой линейкой типоразмеров. Кроме того, изоляция труб со сверхнизкими температурами носителя возможна только при помощи этого материала, т.к он характеризуется высоким показателем сопротивления проницаемости пара и специальными добавками, позволяющими отдельным маркам выдерживать температуру до – 200 °С.

Использование материалов на вспененной основе дает комплексную защиту инженерных сетей. Исходя из параметров изоляционных материалов, можно оценить экономическую целесообразность использования того или иного типа изоляции в различных видах инженерных систем.

В системах горячего водоснабжения с температурой носителя до 90°С хорошо зарекомендовала себя изоляция на основе вспененного полиэтилена. Толщину стенок можно рассчитать при помощи компьютерных программ, предоставляемых производителями изоляции.

При температуре носителя свыше 90°С необходимо использовать изоляцию на основе вспененного каучука, поскольку полиэтилен не способен долго выдерживать такие температурные режимы без потери свойств.

В системах холодного водоснабжения основной проблемой становится защита труб от конденсата. С этим хорошо справляется каучуковая изоляция, но с экономической точки зрения удобнее использовать изоляцию из пенополиэтилена с фольгированным слоем. Фольга служит отличным паробарьером.

Для изоляции трубопроводов и воздуховодов систем кондиционирования применяется вспененный каучук или отражающая изоляция. Установка этих материалов позволяет повысить эффективность системы, увеличить ее долговечность и снизить уровень шума. В системах холодоснабжения и особенно в криогенных системах необходимо применение исключительно специализированных марок вспененного каучука, способных выдерживать низкие и сверхнизкие температуры. Это обусловлено их высоким сопротивлением диффузии водяного пара.

Переход от центральных тепловых пунктов(ЦТП) к индивидуальным(ИТП)

Для системы теплоснабжения Казахстана характерно максимальное упрощение оборудования тепловых вводов большинства потребителей. Это использование элеваторов на вводе и наличие центральных тепловых пунктов. Последние обслуживают, как правило, большие группы зданий, а порой и целые микрорайоны. Системы такого типа обуславливают значительные потери тепла при подаче отопления и горячей воды потребителю. Главная проблема состоит в том, что в большинстве жилых домов регулировать потребление тепловой энергии на вводе системы отопления попросту нечем.

 

Инфракрасные датчики движения и присутствия

 

Обнаружение человека по изменению потока теплового (инфракрасного) на приемной площадке чувствительного элемента датчика, связанного с движением человек или резким изменением температуры находящихся в поле зрения датчика объектов.

Датчики, способные обнаруживать только большие движения (идущих людей) называются датчиками движения.

Датчики, обнаруживающие мелкие движения людей, в том числе сидящих или стоящих, называются датчиками присутствия.

Большинство инфракрасных датчиков могут работать и в том, и в другом режиме – в зависимости от времени задержки отключения света после последнего зарегистрированного движения.

Существуют датчики с функцией мониторинга естественной освещенности – датчик постоянно измеряет освещенность естественным светом и не включает (или отключает – для датчиков присутствия) светильники, если естественная освещенность превышает заданное пороговое значение, даже если в поле зрения датчика находятся люди.

Вышеперечисленные датчики несут функции автоматического включения и выключения светильников во время пребывания людей:

в проходных помещениях (подъездах и на лестничных клетках многоквартирных жилых домов); 

в коридорах, на лестницах, в рекреациях и вспомогательных помещениях учебных и административных зданий, медицинских учреждений;

в санитарно-гигиенических помещениях и раздевалках;

в производственных помещениях без постоянных рабочих мест – на складах, погрузочно-разгрузочных терминалах, в котельных, трансформаторных и т.п.;

в офисных кабинетах;

в аудиториях и учебных классах.

Результат повышения энергоэффективности при массовом внедрении в учебных аудиториях и помещениях с постоянными рабочими местами экономия электроэнергии – до 50%. В помещениях без постоянных рабочих мест – до 85%. В проходных помещения с большим потоком людей – до 55-60%. В проходных помещениях с малым потоком людей – до 95%.

Компенсация реактивной мощности (КРМ) в структуре систем теплоснабжения городов («метод энергетической сетки») 

Проблема компенсации реактивной энергии и мощности возникла одновременно с применением на практике переменного и особенно трехфазного тока. При включении в цепь индуктивной или емкостной составляющей нагрузки (двигатели, промышленные печи и линии электропередач) между электроустановкой и источником возникает обмен потоками энергии, суммарная мощность которого равна нулю, но при этом он вызывает дополнительные потери активной энергии, потери напряжения и снижает пропускную способность электрических сетей. В целом, ухудшается качество электроэнергии, что влечет к увеличению мощности ее потребления и генерации на источнике. На современном уровне развития техники, вопрос качества ресурса снабжения потребителей также актуален, как его объем и надежность энергосистемы. Известно, что альтернативой строительства новых объектов генерации и передачи электроэнергии, является энергосбережение в энергосистеме и компенсация реактивной мощности (энергии): компенсация РМ, как правило, в десятки раз дешевле и эффективнее строительства новых объектов генерации и передачи электроэнергии.

Существуют разные способы снижения реактивной мощности (энергии) в энергосистеме, что обусловлено множеством факторов, имеющих место

- на источнике генерации  электроэнергии,

- в системе транспорта  и распределения электроэнергии,

- у потребителя электроэнергии.

Каждый участок энергосистемы от генерации электроэнергии до ее потребления вносит свою составляющую долю в общую величину реактивной мощности (энергии). Следовательно, компенсация реактивной мощности - это проблема энергосистемы и потребителя. Получается, что энергокомпания несет убытки и риски, возникающие по причине потребителя, а потребитель несет убытки и риски, возникающие по причине энергокомпании.

Разграничение зон ответственности за реактивную составляющую мощности между генерацией, распределительной электросетевой компанией и потребителем - пожалуй, самая сложная задача в процессе управления реактивной мощностью.

Информация о работе Энергосбережение технологий