Электромагнитные поля и их биологическое действие

Автор работы: Пользователь скрыл имя, 02 Декабря 2014 в 21:46, курсовая работа

Краткое описание

Для изучения этой трудной и важной проблемы требуется комплексный подход при участии широкого круга специалистов: биологов, медиков, геофизиков, биофизиков и т.д. бесспорно одно, что солнечно-земные связи – это звенья одной цепи, создающие естественный фон околоземного пространства, существенным образом, влияющим на живые организмы. С другой стороны, бесспорно и другое. В результате антропогенной деятельности увеличивается общий электромагнитный фон окружающей природной среды не только в количественном, но и качественном отношении.

Содержание

Введение
1. Что такое электромагнитное поле, его виды и классификация
2. Основные источники электромагнитного поля
2.1 Электротранспорт
2.2 Линии электропередач
2.3 Электропроводка
2.4 Бытовая электротехника
2.5 Теле- и радиостанции
2.6 Спутниковая связь
2.7 Сотовая связь
2.8 Радары
2.9 Персональные компьютеры
3. Биофизика взаимодействия электромагнитных излучений с биологическими объектами
4. Реакция организма человека на воздействие ЭМ излучений
5. Как защититься от ЭМП
6. Электромагнитная биосфера Земли
7. Биофизика воздействий мощных ЭМ полей Земли на человека
Заключение
Список использованной литературы

Прикрепленные файлы: 1 файл

КУРСОВАЯ РАБОТА Электромагнитные поля и их биологическое действие.docx

— 103.90 Кб (Скачать документ)

Диэлектрические и магнитные свойства биотканей

При взаимодействии электромагнитного излучения с биовеществом возникают два типа эффекта, определяющих диэлектрические свойства тканей. Колебания свободных зарядов (ионов) приводят к увеличению токов проводимости и потере энергии, связанной с электрическим сопротивлением среды. Вращение дипольных молекул с частотой приложения электромагнитного излучения влияет на токи смещения и диэлектрические потери, обусловленные вязкостью среды.

Диэлектрические свойства биотканей описываются диэлектрической проницаемостью и проводимостью. Магнитные свойства биотканей описываются магнитной проницаемостью. Хотя все биоткани являются слабыми диа- и парамагнетиками, близкими по свойствам к вакуумной среде, рассеяние магнитной энергии в биообъекте может быть значительным в зависимости от размеров и электрических свойств этих объектов.

Диэлектрические свойства биотканей существенно зависят от частоты электромагнитных колебаний. Эти зависимости показаны на графиках (рис. 2, 3).

 

Рисунок 2. Зависимость мнимой диэлектрической проницаемости биотканей с высоким содержанием воды от частоты электромагнитных колебаний

 

 

Рисунок 3. Зависимость проводимости биотканей с высоким содержанием воды от частоты электромагнитных колебаний

 

При воздействии на биоткань электрических излучений она поляризуется, и ионные токи будут протекать только по межклеточной жидкости, т.к. мембраны клеток, являясь хорошими изоляторами, отделяют внутриклеточное содержание. Это справедливо для постоянного электрического поля.

При частоте, меньшей 10 кГц, период электромагнитных колебаний достаточно большой для того, чтобы клеточные мембраны успели перезарядиться за счет ионов вне и внутри клетки. Это объясняет наличие низкой удельной ионной проводимости даже для тканей с высоким содержанием воды. При этом полный заряд и диэлектрическая проницаемость ткани за период колебаний велики. Последующий рост удельной проводимости происходит вследствие уменьшения емкостного сопротивления мембран с увеличением частоты. Неполная перезарядка изолированных мембран вовлекает внутриклеточную жидкость в процесс образования ионных токов, проводимость ткани плавно увеличивается, а ее диэлектрическая проницаемость падает.

Лавинное вовлечение внутриклеточной среды в процесс образования ионных токов на частотах 10 кГц ...100 кГц вызывает резкое возрастание удельной проводимости. Кроме того, поляризация молекул тканей, в основном молекул воды, приводит к возникновению токов смещения, увеличивающих токи в тканях при тех же амплитудах напряженности электрического поля, т.е. уменьшает их удельное сопротивление.

При частотах 100 кГц ...10 МГц мембраны все меньше и меньше перезаряжаются, и емкостное сопротивление биоткани падает. Содержимое клеток все активнее включается в процесс образования ионных токов, т.е. проводимость ткани продолжает возрастать, а ее диэлектрическая проницаемость уменьшается. При этом значительно возрастают поляризация молекул и обусловленные ею токи смещения, что приводит к увеличению суммарных токов в биотканях.

При частотах больше 10 МГц емкостное сопротивление мембран клеток становится таким малым, что клетку считают короткозамкнутой. Поляризация молекул и токи смещения становятся доминирующими. Возбужденные молекулы приходят в колебательное движение, сталкиваются с псевдовозбужденными и передают им свою энергию, расходуемую на тепло и химические преобразования. Поэтому проводимость резко возрастает, а диэлектрическая проницаемость меняется незначительно.

 

 

4. Реакция организма человека  на воздействие ЭМ излучений

 

Среди всего спектра наибольшей биологической значимостью и выраженностью симптоматики выделяются ЭМИ РЧ и СВЧ. В зависимости от интенсивности и продолжительности воздействия ЭМИ РЧ и СВЧ вызываемые изменения в организме подразделяют на изменения острого (термогенного) и хронического (атермального) воздействия. Острое воздействие обусловлено термическим воздействием ЭМИ, как правило, при нарушении техники безопасности. Термогенное воздействие обычно носит локальный характер, а возникающая симптоматика определяется топографией облучаемой области. При облучении пострадавшие ощущают тепло в месте воздействия, схожее с действием солнечных лучей. Иногда отмечают также общее недомогание, головную боль, головокружение, тошноту, рвоту, чувство страха, жажду, легкую слабость, боли в конечностях, повышенную потливость. У пострадавших наблюдаются повышение температуры тела, приступы тахикардии, нарушение сердечной деятельности, артериальная гипертензия. В ряде случаев в клинике острых воздействий могут преобладать диэнцефальные расстройства. Субъективная и объективная симптоматика у пострадавших через несколько дней исчезает, все клинические показатели приходят к доклиническому уровню, полностью восстанавливается работоспособность. Немногочисленные клинические наблюдения острого теплового действия ЭМИ на человека указывают на возможность локальных остаточных структурных изменений органов и тканей (ожогов, катаракты, атрофии семенников и т.д.).

Влияние излучений РЧ и СВЧ

Наиболее обширно в литературе представлены сведения, касающиеся клинико-эпидемиологического характера хронического влияния ЭМИ. Как правило, наблюдаемые изменения регистрировались при воздействии ЭМИ интенсивностью, подчас превышающей предельно допустимый уровень, но не приводящей к тепловым эффектам. По данным ряда отечественных авторов, у персонала, связанного с работой источников ЭМИ РЧ и СВЧ, выявляется разнообразная неврологическая симптоматика как субъективного, так и объективного характера. По зарубежным данным, при исследовании клинического статуса может отмечаться даже стимуляция неврологической симптоматики. Предъявляемые жалобы были хроническими и наблюдались еще до момента переоблучения. У таких пациентов может длительно сохраняться переоценка вреда, наносимого фактором. Для установления истинной картины в последнее время в практике клинико-эпидемиологического обследования начали широко применяться психологические методы. При использовании ряда психологических тестов у персонала, имеющего длительный контакт с ЭМИ, наблюдают достоверное усиление патологической компоненты тревожного поведения и депрессивного состояния при отсутствии каких-либо объективных симптомов. При анкетировании могут наблюдаться преобладание жалоб на снижение памяти, а также на ухудшение самочувствия, увеличение критической частоты слияния световых мельканий к концу рабочего дня. Наиболее характерными в динамике изменений реакции организма на хроническое воздействие ЭМИ являются: реакции центральной нервной и сердечно-сосудистой систем, а также системы крови. При этом выделяют три ведущих синдрома: астенический, астеновегетативный и гипоталамический. Астенический синдром наблюдают в начальных стадиях проявлений изменений, вызванных ЭМИ, два других - на умеренно выраженной и выраженной стадиях. Представленная симптоматика не всегда повторяется и не обязательно встречается у лиц, подвергающихся облучению.

Некоторые авторы считают, что хронические воздействия ЭМИ РЧ и СВЧ при интенсивности менее 10 Вт/м2 могут вызывать в системе крови различные неустойчивые изменения: лейкоцитоз, увеличение количества лимфоцитов. Иногда отмечают моноцитоз, патологическую зернистость нейтрофилов, ретикулоцитоз и тромбоцитопению. Однако большинство исследователей отмечают недостоверный характер этих изменений даже при кратковременном воздействии «до ощущения тепла» и неспецифичность проявлений, свойственных также многим неблагоприятным факторам труда.

Данные эпидемиологического изучения отдаленных последствий, предписываемых влиянию ЭМИ, в том числе возникновения специфических заболеваний крови, показывают, что нахождение стойких изменений в крови в условиях воздействия реально существующих уровней ЭМИ у профессионалов и тем более у населения представляется весьма проблематичным.

Таким образом, представленные данные клинико-эпидемиологических исследований о влиянии ЭМИ РЧ и СВЧ на организм человека свидетельствуют, что выраженность наблюдаемых изменений зависит от интенсивности и времени воздействия. Общая картина изменений под влиянием различных уровней ЭМИ представлена в табл. 10.

 

Таблица 10 Возможные изменения в организме человека под влиянием ЭМИ различных интенсивностей

Интенсивность ЭМИ, мВт/см2

Наблюдаемые изменения

600

Болевые ощущения в период облучения

200

Угнетение окислительно-восстановительных процессов в ткани

100

Повышенное артериальное давление с последующим его снижением; в случае воздействия - устойчивая гипотензия. Двухсторонняя катаракта

40

Ощущение тепла. Расширение сосудов. При облучении 0,5-1 ч повышение давления на 20-30 мм рт. ст.

20

Стимуляция окислительно-восстановительных процессов в ткани

10

Астенизация после 15 мин. облучения, изменение биоэлектрической активности головного мозга

8

Неопределенные сдвиги со стороны крови с общим временем облучения 150 ч, изменение свертываемости крови

6

Электрокардиографические изменения, изменения в рецепторном аппарате

4-5

Изменение артериального давления при многократных облучениях, непродолжительная лейкопения, эритропения

3-4

Ваготоническая реакция с симптомами брадикардии, замедление электропроводимости сердца

2-3

Выраженный характер снижения артериального давления, тенденция к учащению пульса, незначительные колебания объема сердца

1

Снижение артериального давления, тенденция к учащению пульса, незначительные колебания объема крови сердца. Снижение офтальмотонуса при ежедневном воздействии в течение 3,5 месяцев

0,4

Слуховой эффект при воздействии импульсных ЭМП

0,3

Некоторые изменения со стороны нервной системы при хроническом воздействии в течение 5-10 лет

0,1

Электрокардиографические изменения

до 0,05

Тенденция к понижению артериального давления при хроническом воздействии


 

Роль излучений КНЧ в ускорении роста раковых клеток

К электромагнитным излучениям крайне низкой частоты относятся электромагнитные излучения с частотами 30...300 Гц. КНЧ-поля не настолько энергетически сильны, чтобы изменить или разрушить связи в клетках на молекулярном уровне. Вместо этого КНЧ-поля, по-видимому, имитируют электрические изменения, которые обычно происходят в живой клетке организма.

Эта имитация обычных внутриклеточных процессов может лежать в основе потенциальной способности КНЧ-поля ускорять рост раковых опухолей. Некоторые ученые отметили, что участки мембраны, на которые воздействовало КНЧ-излучение, ведут себя как рецептор для химических веществ, ускоряющих рост раковых клеток.

Ученые считают, что КНЧ-поля также увеличивают химическую активность соединения, известного под названием ортинин декарбоксилаза, и этот эффект связывают с ускоренным развитием раковых клеток. Кроме того, КНЧ-поля разрушают функции соединения клеток - другой эффект, который также связывают с ростом раковых клеток.

Некоторые эксперименты обнаружили существование «оконных эффектов», т.е. некоторые биологические эффекты проявлялись только при определенной напряженности КНЧ-поля и не проявлялись при большей или меньшей напряженности. Кроме того, эти «оконные эффекты», по-видимому, зависели от наличия и ориентации статических полей, таких, как магнитное поле Земли.

Следует отметить, что, по-видимому, биологическое воздействие КНЧ-поля зависит от вида его волн. Ученые считают, что наименее активны синусоидальные волны, являющиеся характеристикой электричества, используемого в быту. Наиболее активными являются импульсные излучения, подобные тем, которые генерируются радарами, и поля с пилообразной характеристикой, которые генерируются схемами телевизоров и мониторов.

Вероятность возникновения рака у людей, живущих рядом с ЛЭП (ближе 400 м), возрастает на 29%. Ученые считают, что ЛЭП, ионизируя окружающий воздух, делает его опасным для здоровья: если вдыхать такой воздух, то заряженные частицы оседают в легких.

Пользователям компьютеров ученые советуют не работать в ночное и вечернее время, так как интенсивный свет действует на эпифиз, вследствие этого угнетается синтез мелатонина (гормона эпифиза), что может повлечь за собой заболевания. Свет угнетает синтез малатонина, поэтому его концентрация максимальна ночью, а утром и днем – минимальная. Вследствие систематического искусственного освещения человека ночью у него может образоваться опухоль. Особенный вред избыточная освещенность приобретает тогда, когда на организм действуют какие-либо канцерогенные факторы, например химические или радиационные.

Катаракта, как результат воздействия излучений РЧ и СВЧ

Особое место при изучении влияния ЭМИ РЧ и СВЧ на организм человека занимает исследование катарактогенеза – помутнения хрусталика с потерей зрительной функции. Результаты клинических исследований катаракты, возникшей от излучений РЧ и СВЧ, представляют собой неясную картину.

Среди факторов риска, способствующих возникновению катаракты, по данным ВОЗ, электромагнитным излучениям РЧ и СВЧ отводят пятое место после диабета, ультрафиолетового облучения, метаболических нарушений и ионизирующей радиации. Начиная с 1952 г. в печати сообщалось о десятках случаев возникновения у людей электромагнитной катаракты. Из всех представленных в литературе случаев возникновения катаракты у людей, контактирующих с источниками ЭМИ, следует, что процесс катарактогенеза может развиваться на фоне довольно длительного (от 1 года до 6 лет) хронического облучения ЭМИ с тепловыми уровнями, иногда при случайных кратковременных попаданиях в поле интенсивностью, превышающей средние значения в 20-100 раз. Помимо катаракты, под воздействием электромагнитных излучений при частотах, близких к 35 ГГц, могут возникать кератиты, а также повреждения стромы роговицы. При нетепловых интенсивностях в ряде случаев можно обнаружить нарушения функции зрения, связанные с различением цветов, сосудистые изменения дна глаза, а также ретинальные повреждения. Однако большинство специалистов, изучавших клинические проявления катаракты или другого поражения органа зрения у персонала, контактирующего с ЭМИ при интенсивностях ниже тепловых, дают отрицательный ответ (в перечне профессиональных заболеваний данная профпатология отсутствует). Тем не менее, это не снимает вопроса о поражении глаз человека при более высоких уровнях воздействия, так как в эксперименте катаракту от воздействия ЭМИ можно отличить абсолютно достоверно.

Слуховые эффекты при воздействии излучений РЧ и СВЧ

Исследования, проведенные с участием людей, выявили слуховые эффекты, возникающие при воздействии импульсных ЭМИ. Так, при облучении головы прямоугольными импульсами с пиковой плотностью потока энергии около 30,0 Вт/м2 и средней 1,0 - 4,0 Вт/м2 у человека возникают слуховые ощущения. В зависимости от длительности и частоты следования импульсов ЭМИ они воспринимаются как щелчки, жужжание или чирикание. Гигиеническая значимость этого явления не совсем ясна. При определенных параметрах ЭМИ у человека могут, очевидно, возникать реакции, подобные тем, которые бывают при акустическом шуме.

 

 

5. Как защититься от  ЭМП

 

Организационные мероприятия по защите от ЭМП

Информация о работе Электромагнитные поля и их биологическое действие