Автор работы: Пользователь скрыл имя, 24 Июня 2014 в 12:36, доклад
Радиочастоты — частоты или полосы частот в диапазоне 3 кГц — 3000 ГГц, которым присвоены условные наименования. Этот диапазон соответствует частоте переменного тока электрических сигналов для вырабатывания и обнаружения радиоволн. Так как большая часть диапазона лежит за границами волн, которые могут быть получены при механической вибрации, радиочастоты обычно относятся к электромагнитным колебаниям.
Неполное внутреннее отражение — внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.
Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны.
Этот оптический феномен наблюдается для широкого спектра электромагнитного излучения включая и рентгеновский диапазон.
В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.
В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду — там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.
Полное внутреннее отражение в природе и технике
Фата-моргана, эффекты миража, например иллюзия мокрой дороги при летней жаре. Здесь отражения возникают из-за полного отражения между слоями воздуха с разной температурой.
Яркий блеск многих природных кристаллов, а в особенности — огранённых драгоценных и полудрагоценных камней объясняется полным внутренним отражением, в результате которого каждый вошедший в кристалл луч образует большое количество достаточно ярких вышедших лучей, окрашенных в результате дисперсии.
Блеск алмазов, выделяющий их из прочих драгоценных камней, также определяется этим феноменом.
Меню
Характеристики
Далее
Из-за высокого коэффициента преломления (n ≈ 2) алмаза оказывается большим и число внутренних отражений, которые претерпевает луч света с меньшими потерями энергии, по сравнению со стеклом и другими материалами с меньшим показателем преломления.
Полное внутреннее отражение можно наблюдать, если смотреть из-под воды на поверхность: при определенных углах на границе раздела наблюдаеться не внешняя часть (то, что в воздухе), а видно зеркальное отражение объектов, которые находятся в воде.
Световод
Эффект полного внутреннего отражения используется в световодах. Осевая часть волокна создаётся из стекла с высоким показателем преломления и погружается в оптически менее плотную среду (пластиковая оболочка волокна, специальная жидкость, воздух). Такие световоды используются для построения Волоконно-оптических кабелей
Отражение рентгеновских лучей
При рентгеновском излучении согласно общей формуле значений коэффициента преломления:
вытекает, что вакуум — оптически более плотная среда, чем любое вещество. Значения коэффициента δ при прохождении рентгеновских лучей лежат в области между < / 10 − 6 и < / 10 − 5 и зависят от квантовой энергии излучения, констант кристаллической решётки и плотности вещества.
При небольших углах падения, наблюдается эффект скольжения, преломления рентгеновских лучей с отражением под углом, равным углу падения (θ). Углы скольжения для «жёстких» рентгеновских лучей составляют доли градуса, для «мягких» — примерно 10-20 градусов.
Преломление рентгеновских лучей при скользящем падении было впервые сформулировано М. А. Кумаховым, разработавшим рентгеновское зеркало, и теоретически обосновано Артуром Комптоном в 1923 году.
Меню
Характеристики
Назад
Электромагнитный спектр
Электромагнитный спектр — спектр электромагнитного излучения.
Длина волны — Частота — Энергия фотона
В качестве спектральной характеристики электромагнитного излучения используют следующие величины:
Энергия фотона, согласно квантовой механике, пропорциональна частоте: E = hν, где h — постоянная Планка, Е — энергия, ν — частота. Длина электромагнитной волны в вакууме обратно пропорционально частоте и выражается через скорость света:
Говоря о длине электромагнитных волн в среде, обычно подразумевают эквивалентную величину длины волны в вакууме, которая отличается на коэффициент преломления, поскольку частота волны при переходе из одной среды в другую сохраняется, а длина волны — изменяется. В верхней части шкалы приводятся значения энергии (в электронвольтах). Частоты, указанные в нижней части шкалы, выражены в герцах, а также в кратных единицах: кГц = 1000 Гц, МГц = 1000 кГц = 1000000 Гц, ГГц = 1000 МГц = 109 Гц, ТГц = 1000 ГГц = 1012 Гц.
Шкала частот (длин волн, энергий) является непрерывной, но традиционно разбита на ряд диапазонов. Соседние диапазоны могут немного перекрываться.
Меню
Характеристики
Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света. В большинстве случаев (обычно) скорость — и групповая, и фазовая — распространения электромагнитного излучения в веществе отличается от таковых в вакууме очень незначительно (на доли процента). Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий; в соответствии с современными представлениями (Стандартная модель) при высоких энергиях электродинамика перестает быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при еще более высоких энергиях — как ожидается — со всеми остальными калибровочными полями. Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной из завершенных и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях.
Основные характеристики электромагнитного излучения
Меню
Характеристики
Далее
Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики. Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:
Меню
Характеристики
Назад
1
2
3
4
5
6
7
8