Автор работы: Пользователь скрыл имя, 26 Мая 2012 в 10:05, аттестационная работа
Конструкция, исполнение и нормальная работа электроустановок, в которых производиться, преобразуется, распределяется и потребляется электроэнергия, зависят от окружающей среды. Различные требования предъявляют к электроустановкам наружным (открытым) и внутренним (закрытым). Помещения, в которых выполняется монтаж электроустановка в зависимости от состояния среды (температуры, влажности, запылённости, загазованности) разделяют на сухие, влажные, сырые, особо сырые, пыльные, с химически активной средой, жаркие, пожара и взрывоопасные. Кроме того различают помещения с повышенной опасностью, особо опасные и без повышенной опасности.
1- колба; 2- полость колбы (вакуумированная или наполненная газом); 3- тело накала; 4,5- электроды (токовые вводы); 6- крючки-держатели тела накала; 7- ножка лампы; 8- внешнее звено токоввода, предохранитель; 9- корпус цоколя; 10- изолятор цоколя (стекло); 11- контакт донышка цоколя.
Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.
В конструкции ламп общего назначения предусматривается предохранитель — звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы — как правило, в ножке. Назначение предохранителя — предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга, которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.
Форма цоколя с резьбой обычной лампы накаливания была предложена Джозефом Уилсоном Суоном. Размеры цоколей стандартизованы. У ламп бытового применения наиболее распространены цоколи Эдисона E14 (миньон), E27 и E40 (цифра обозначает наружный диаметр в мм). Также встречаются цоколи без резьбы (удержание лампы в патроне происходит за счёт трения или нерезьбовыми сопряжениями — например, байонетным) — британский бытовой стандарт, а также бесцокольные лампы, часто применяемые в автомобилях.
Преимущества:
налаженность в массовом производстве
малая стоимость
небольшие размеры
отсутствие пускорегулирующей аппаратуры
нечувствительность к ионизирующей радиации
чисто активное электрическое сопротивление (единичный коэффициент мощности)
быстрый выход на рабочий режим
невысокая чувствительность к сбоям в питании и скачкам напряжения
отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
возможность работы на любом роде тока
нечувствительность к полярности напряжения
возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
отсутствие мерцания и гудения при работе на переменном токе
непрерывный спектр излучения
приятный и привычный в быту спектр
устойчивость к электромагнитному импульсу
возможность использования регуляторов яркости
не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату
Недостатки:
низкая световая отдача
относительно малый срок службы
хрупкость, чувствительность к удару и вибрации
бросок тока при включении (примерно десятикратный)
при термоударе или разрыве нити под напряжением возможен взрыв баллона
резкая зависимость световой отдачи и срока службы от напряжения
лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 25 Вт-100 °C, 40 Вт 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается ещё сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.
нагрев частей лампы требует термостойкой арматуры светильников
световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %. Включение электролампы через диод, что часто применяется с целью продления ресурса на лестничных площадках, в тамбурах и прочих затрудняющих замену в местах, ещё больше усугубляет её недостатки.
4. Галогенная лампа
Галогенная лампа — лампа накаливания, в баллон которой добавлен буферный газ: пары галогенов (брома или йода). Это повышает время жизни лампы до 2000—4000 часов, и позволяет повысить температуру спирали. При этом рабочая температура спирали составляет примерно 3000 К. Эффективность массово производимых галогенных ламп пока (январь 2012) не может достигать 28 лм/Вт, большинство производимых 15-22 лм/Вт.
Электрический ток, проходя через тело накала (обычно — вольфрамовую спираль), нагревает его до высокой температуры. Нагреваясь, тело накала начинает светиться. Однако из-за высокой рабочей температуры атомы вольфрама испаряются с поверхности тела накала (вольфрамовой спирали) и осаждаются (конденсируются) на менее горячих поверхностях колбы, ограничивая срок службы лампы.
В галогенной лампе окружающий тело накала йод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама, препятствуя осаждению последних на колбе. Этот процесс является обратимым — при высоких температурах вблизи тела накала соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё. В результате атомы вольфрама возвращаются на тело накала, что позволяет повысить рабочую температуру спирали (для получения более яркого света), продлить срок службы лампы, а также уменьшить габариты по сравнению с обычными лампами накаливания той же мощности.
Галогенные лампы одинаково хорошо работают на переменном и постоянном токе. При применении плавного включения срок службы может быть повышен до 8000-12 000 часов.
Добавление галогенов предотвращает осаждение вольфрама на стекле, при условии, что температура стекла выше 250 °C. По причине отсутствия почернения колбы, галогенные лампы можно изготавливать очень компактными. Малый объём колбы позволяет, с одной стороны, использовать большее рабочее давление (что опять же ведёт к уменьшению скорости испарения нити) и, с другой стороны, без существенного увеличения стоимости заполнять колбу тяжёлыми инертными газами, что ведёт к уменьшению потерь энергии за счёт теплопроводности. Всё это удлиняет время жизни галогенных ламп и повышает их эффективность.
Галогенные лампы обладают очень хорошей цветопередачей (Ra 99-100), поскольку их непрерывный спектр близок к спектру абсолютно чёрного тела с температурой 2800-3000K. Их свет подчёркивает тёплые тона, но в меньшей степени, чем свет обычных ламп накаливания.
Хотя галогенные лампы не достигают эффективности люминесцентных и тем более светодиодных ламп, их преимущество состоит в том, что они могут быть без каких-либо доработок использованы как прямая замена обычных ламп накаливания, например, с диммерами и с выключателями с подсветкой («с огоньком»).
Галогенные лампы также активно используются в автомобильных фарах благодаря их повышенной светоотдаче, долговечности, устойчивости к колебаниям напряжения, малым размерам колбы.
Мощные галогенные лампы используются в прожекторах, рампах, а также для освещения при фото-, кино- и видеосъёмке, в кинопроекционной аппаратуре.
Галогенные лампы очень чувствительны к жировым загрязнениям, поэтому их внутренних колб нельзя касаться даже чисто вымытыми руками. Ввиду высокой температуры колбы любые загрязнения поверхности (например, отпечатки пальцев) быстро сгорают в процессе работы, оставляя почернения. Это ведёт к локальным повышениям температуры колбы, которые могут послужить причиной её разрушения (поэтому, из-за высокой температуры, колбы изготавливаются из кварцевого стекла). При их установке следует держать колбу лампы через чистую салфетку (или в чистых перчатках), а при случайном касании тщательно протереть колбу тканью, не оставляющей волокон(например микрофиброй) со спиртом.
Поскольку колба галогенной лампы разогревается до пожароопасных температур, то её следует монтировать так, чтобы в дальнейшем полностью исключить всякую возможность её соприкосновения с любыми находящимися поблизости предметами и материалами, и тем более человеческим телом.
При использовании галогенной лампы с диммером необходимо время от времени включать лампу на полную мощность, чтобы испарить накопившийся на внутренней части колбы осадок йодида вольфрама.
Новым направлением развития ламп является т. н. IRC-галогенные лампы (сокращение IRC обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность лампы. По данным фирмы OSRAM, потребление энергии снижается на 45 %, а время жизни удваивается (по сравнению с обычной галогенной лампой).
5. Люминесцентные лампы
Люминесцентная лампа — газоразрядный источник света, в котором видимый свет излучается в основном люминофором, который в свою очередь светится под воздействием ультрафиолетового излучения разряда; сам разряд тоже излучает видимый свет, но в значительно меньшей степени. Световая отдача люминесцентной лампы в несколько раз больше, чем у ламп накаливания аналогичной мощности. Срок службы люминесцентных ламп может в 10 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу включений и выключений.
Наиболее распространены газоразрядные ртутные лампы высокого и низкого давления. Лампы высокого давления применяют в основном в уличном освещении и в осветительных установках большой мощности, в то время как лампы низкого давления применяют для освещения жилых и производственных помещений.
Газоразрядная ртутная лампа низкого давления ГРЛНД представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора, заполненную аргоном под давлением 400 Па и ртутью (или амальгамой).
При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, возникает низкотемпературный дуговой разряд. Лампа заполнена инертным газом и парами ртути, проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора, можно менять оттенок свечения лампы. В качестве люминофора используют в основном галофосфаты кальция и ортофосфаты кальция-цинка.
В соответствии с ГОСТ 6825-91 «Лампы люминесцентные трубчатые для общего освещения», действующий, лампы люминесцентные линейные общего назначения маркируются, как:
ЛБ (белый свет)
ЛД (дневной свет)
ЛЕ (естественный свет)
ЛХБ (холодный свет)
ЛТБ (тёплый свет)
Добавление буквы Ц в конце означает применение люминофора «де-люкс» с улучшенной цветопередачей, а ЦЦ — люминофора «супер де-люкс» с высококачественной цветопередачей.
Лампы специального назначения маркируются, как:
ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР (лампы цветного свечения)
ЛУФ (лампы ультрафиолетового света)
ДБ (лампа ультрафиолетового света типа С)
ЛСР (синего света рефлекторные)
Люминесцентная лампа, в отличие от лампы накаливания, не может быть включена напрямую в электрическую сеть. Причин для этого две:
Для зажигания дуги в люминесцентной лампе требуется импульс высокого напряжения.
Люминесцентная лампа имеет отрицательное дифференциальное сопротивление, после зажигания лампы ток в ней многократно возрастает. Если его не ограничить, лампа выйдет из строя.