Электрические цепи постоянного тока

Автор работы: Пользователь скрыл имя, 16 Января 2014 в 10:56, творческая работа

Краткое описание

Все тела состоят из атомов. Атом состоит из ядра и электронов. Электроны вращаются вокруг ядра на различных орбитах, одни из которых ближе к ядру, другие дальше.
Электрический ток появляется под действием движения свободных электронов, если их заставить двигаться, то появится электрический ток.

Содержание

1. Физика электрического тока
2. Понятие основных электрических велечин
3. Виды источников электрической энергии
4. Понятие электрической цепи
5. Способы соединения приемников электрической энергии
6. Способы соединения источников электрической энергии
7. Алгоритм расчета простой неразветвленной электрической цепи

Прикрепленные файлы: 1 файл

Электротехника (Электрические цепи).pptx

— 557.63 Кб (Скачать документ)

 

 

 

 

 

 

 

 

 

   Электрические  цепи постоянного тока

 

 

 

 

 

Содержание

 

    • 1. Физика электрического тока
    • 2. Понятие основных электрических велечин
    • 3. Виды источников электрической энергии
    • 4. Понятие электрической цепи
    • 5. Способы соединения приемников электрической энергии
    • 6. Способы соединения источников электрической энергии
    • 7. Алгоритм расчета простой неразветвленной электрической цепи

  Физика электрического  тока

 

 Все  тела состоят из атомов. Атом  состоит из ядра и электронов. Электроны вращаются вокруг ядра  на различных орбитах, одни  из которых ближе к ядру, другие  дальше.

Электрический ток появляется под действием  движения свободных электронов, если их заставить двигаться, то появится электрический ток.

В проводнике электрический ток – это направленное движение электронов. В действительности – это их дрейф по проводнику с одного конца на другой под действием  внешней энергии. Скорость дрейфа невелика (около 1мм/с), однако распространение  электрического взаимодействия осуществляется со скоростью близкой к скорости света ( 300 000 км/с)

Понятие основных электрических величин

 

    • При изучении радиотехнических цепей используются понятия электрический заряд, ток, потенциал, напряжение, энергия и мощность.
    • Электрический заряд - это источник электрического поля. Заряды бывают двух знаков: положительные и отрицательные. Значение заряда определяется в Кулонах (Кл).
    • Электрический ток - это направленное перемещение зарядов q в электрической цепи под действием электрического поля. Если ток не изменяется с течением времени, то он называется постоянным токомI. Значение постоянного тока I определяется количеством зарядов q, перемещающихся через поперечное сечение проводника в единицу времени t: I=q/t.

 

    • Если ток изменяется во времени, то он называется переменным током i и определяется выражением:

 

 

    • Измеряется ток в амперах (А), милиамперах (мА), микроамперах (мкА), наноамперах (нА):

                                        

 

    • Значение тока в любой заданный момент времени t называется мгновенным и обозначается i = i(t). Как функция времени ток i(t) может принимать положительные и отрицательные значения. Считают значение тока i(t) положительным, если движение положительных зарядов совпадает с выбранным направлением отсчета тока и отрицательным - в противном случае. Выбор направления отсчета тока произволен. Положительное направление тока показывается стрелкой.
    • Электрический потенциал некоторой точки электрической цепи – есть величина равная отношению потенциальной энергии W, которой обладает заряд q, находящийся в данной точке, к этому заряду: V=W/q                                                                  
    • В электрических цепях за точку с нулевым потенциалом принимают заземленную точку, куда стекаются все заряды. Измеряется потенциал в вольтах (В).
    • Электрическое напряжение - это разность электрических потенциалов между двумя точками электрической цепи. Чтобы переместить электрический заряд Δq из одной точки электрической цепи в другую, которые имеют различные электрические потенциалы, необходимо затратить электрическую энергиюΔW. Напряжение, энергия и заряд связаны между собой соотношением:

 

    • Измеряется напряжение в вольтах (В), миливольтах (мВ), микровольтах (мкВ), нановольтах (нВ):

 

где Дж –  Джоуль (единица измерения энергии).

    • Значение напряжения в любой заданный момент времени t называется  мгновенным и обозначается u = u(t). Если напряжение не изменяется во времени, то оно называется постоянным и обозначается U.
    • Напряжение u(t) может принимать как положительные так и отрицательные значения. Для определенности считают, что напряжение действует в направлении от более высокого потенциала «+» к более низкому, т.е. к «-». В этом случае положительные направления отсчета напряжения и тока будут совпадать.
    • Электрическая энергия, затраченная на перемещение единичного положительного заряда между двумя точками участка цепи с напряжением u, к моменту времени t определяется уравнением:

 

    • Измеряется энергия в Джоулях (Дж):

Электрическая мощность определяется как производная  энергии по времени:

Измеряется  мощность в ваттах (Вт) миливаттах (мВт) и микроваттах (мкВт):

Виды истоников  электрической энергии

 

К основным источникам электрической энергии можно  отнести электростанции, коих существует три типа. Это тепловые, атомные  и гидроэлектростанции. К тепловым относят станции, вырабатывающие энергию  в ходе преобразования тепла, выделяемого  в процессе сжигания органических видов  топлива.

Среди них преобладают  паротурбинные тепловые станции, где  тепловую энергию в парогенераторе используют для получения водяных  паров под высоким давлением. Это позволяет приводить во вращение роторы паровых турбин, которые соединяются  с роторами электрических генераторов, как правило, синхронного типа. В  качестве привода подобные станции  оснащаются конденсационными или теплофикационными  турбинами. Станции, которые оснащены теплофикационными турбинами, называются теплоэлектроцентралями.

В свою очередь  гидроэлектростанции представляют собой комплекс оборудования и сооружений, преобразующих энергию воды в  электричество. Гидроэлектростанция  это, по сути, цепь гидротехнических сооружений, которые обеспечивают необходимый  уровень концентрации водных потоков  и создают напор. Вместе с этим в их структуре есть энергетическое оборудование, способное преобразовывать  энергию, которая движется под водяным  напором в механическое вращение, преобразуемое в электроэнергию.

Наиболее  эффективными и производительными  являются атомные электростанции, преобразующие  ядерную энергию в электрическую. В качестве генератора энергии здесь  выступает  атомный реактор, выделяемое им тепло в ходе цепной реакции, подразумевающей  деление ядер ряда тяжёлых элементов, преобразуется в электричество. В то время, как ТЭС работает с  ограниченным топливом атомные станции  функционируют на ядерном горючем, которое основано на  239Pu, 235U, а также 233U. В процессе деления одного грамма изотопов плутония или урана происходит высвобождение 22500 кВт/ч, это эквивалентно объёму энергии, которая содержится в 2800кг обыкновенного топлива.

Не является секретом, что запасы ядерного горючего, такого как плутоний и уран значительно  превышают залежи органического  топлива, такого как уголь, нефть  и природный газ. Это открывает  широкие перспективы для выработки  энергии, однако в ходе эксплуатации атомных станций были выявлены серьёзные  проблемы с безопасностью, что оставляет  открытым вопрос об универсальном источнике  электрической энергии.

 

Понятие электрической  цепи

 

Электрическая цепь  — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.

Изображение электрической цепи с помощью  условных знаков называют электрической схемой (рисунок 1).

 

 

                                              (рисунок 1)

 

Классификация электрических цепей

Неразветвленные и разветвленные  электрические цепи

 Электрические цепи подразделяют  на неразветвленные и разветвленные.  На рисунке 1 представлена схема  простейшей неразветвленной цепи. Во всех ее элементах течет  один и тот же ток. Простейшая  разветвленная цепь изображена  на рисунке 2. В ней имеются  три ветви и два узла. В каждой  ветви течет свой ток. Ветвь  можно определить как участок  цепи, образованный последовательно  соединенными элементами (через  которые течет одинаковый ток)  и заключенный между двумя  узлами. В свою очередь узел  есть точка цепи, в которой  сходятся не менее трех ветвей. Если в месте пересечения двух  линий на электрической схеме  поставлена точка (рисунок 2), то  в этом месте есть электрическое  соединение двух линий, в противном  случае его нет. Узел, в котором  сходятся две ветви, одна из  которых является продолжением  другой, называют устранимым или  вырожденным узлом. 

 

                                                       ( рисунок 2)

                                               

Линейные  и нелинейные электрические цепи

  Линейной  электрической цепью называют  такую цепь, все компоненты которой  линейны. К линейным компонентам  относятся зависимые и независимые  идеализированные источники токов  и напряжений,резисторы (подчиняющиеся  закону Ома), и любые другие  компоненты, описываемые линейными  дифференциальными уравнениями,  наиболее известны электрические  конденсаторы и индуктивности.  Если цепь содержит отличные  от перечисленных компоненты, то  она называется нелинейной.

Изображение электрической цепи с помощью  условных обозначений называют электрической  схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси  ординат — ток.

В частности, омические резисторы, ВАХ которых  описывается линейной функцией и  на графике ВАХ являются прямыми  линиями, называют линейными.

Примерами линейных (как правило, в очень  хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки  индуктивности без ферромагнитных сердечников.

Некоторые нелинейные цепи можно приближенно  описывать как линейные, если изменение  приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей  точке). Этот подход называют "линеаризацией". При этом к цепи может быть применён мощный математический аппарат анализа  линейных цепей. Примерами таких  нелинейных цепей, анализируемых как  линейные относятся практически  любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).

 

Основные законы электротехники

 

Самый главный закон  электротехники – закон Ома

Закон Ома гласит:  Сила тока в однородном участке цепи прямо  пропорциональна напряжению, приложенному к участку, и обратно пропорциональна  электрическому сопротивлению этого  участка.

И записывается формулой: R=U/ I. (Где: I — сила тока (А), U — напряжение (В), R— сопротивление (Ом).)

Законы  Кирхгофа (или правила Кирхгофа)

Первый  закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

 

Второй  закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений:

 

для переменных напряжений:

     Закон Ома для участка электрической  цепи

      Закон Ома в простейшем случае связывает величину тока через сопротивление с величиной этого сопротивления и приложенного к нему напряжения:

       I=U/R ;U=IR 
Сила тока на некотором участке электрической цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению этого участка.

       Закон Ома справедлив для любой ветви (или части ветви) электрической цепи, втаких случаях его называют обобщенным законом Ома. Для ветви, не содерсодержащей ЭДС, закон Ома запишется:  

 

 

 

Обобщенный  закон Ома для ветви, содержащей ЭДС (т.е. для активной ветви):  

Закон Ома  для участка цепи.

Сила тока в участке цепи прямо  пропорциональна напряжению на концах этого участка и обратно пропорциональна  сопротивлению этого участка.

  

Информация о работе Электрические цепи постоянного тока