Измерительное оборудование

Автор работы: Пользователь скрыл имя, 09 Сентября 2014 в 15:42, доклад

Краткое описание

Весы — устройство или прибор для определения массы тел (взвешивания) по действующему на них весу, приближённо считая его равным силе тяжести. Вес тела может быть определён как через сравнение с весом эталонной массы (как в рычажных весах), так и через измерение этой силы через другие физические величины.
Помимо самостоятельного использования весы могут быть основным элементом автоматизированной системы учёта и контроля материальных потоков.

Прикрепленные файлы: 1 файл

Весы.docx

— 1.05 Мб (Скачать документ)

Весы — устройство или прибор для определения массы тел (взвешивания) по действующему на них весу, приближённо считая его равным силе тяжести. Вес тела может быть определён как через сравнение с весом эталонной массы (как в рычажных весах), так и через измерение этой силы через другие физические величины.

Помимо самостоятельного использования весы могут быть основным элементом автоматизированной системы учёта и контроля материальных потоков. Это обеспечивает оперативное управление производством и позволяет увеличить объемы производства, повысить качество и рентабельность продукции, снижая при этом затраты и издержки.

Предыстория:

Первые найденные археологами образцы весов относятся к V тысячелетию до н. э., применялись они в Месопотамии.

Весы хорошо видны на папирусе ХIX династии (около 1250 года до н. э.). Согласно древнеегипетской «Книге мертвых», Анубис, на входе в подземное царство взвешивает сердце всякого умершего на особых весах, где в качестве гири выступает богиня правосудия Маат.

Каменная стела I тысячелетия до н. э. (Турция) изображает хетта, использующего вместо поперечной планки балансовых весов собственный палец.

Историки приписывают римлянам изобретение принципиально новой системы измерения веса — при которой передвигается гиря, а точка опоры и положение привеса остаются неизменными. В Помпеях найден один из самых ранних безменов. У римского приспособления, в отличие от современного, было две шкалы и две ручки в виде крюков.

В Древней Руси товары взвешивали на равноплечих весах — скалвах. С XIV века на Руси появляется слово «безмен» (от тюрк. batman — мера веса около 10 кг)

 

Принцип действия


Классификация по принципу действия

По тому, на каких физических законах основано взвешивание, весы можно разделить на рычажные (основаны на принципе рычага), пружинные (основаны на законе Гука, например, ручные пружинные весы), тензометрические (основаны на преобразовании деформации тензодатчика), гидростатические(основаны на действии архимедовой силы, применяются для измерения плотностей тел), гидравлические.

Принцип действия рычажных весов

Равноплечные весы

В равноплечных рычажных весах точки подвеса грузов (m1 и m2) и точка опоры образуют равнобедренный треугольник (коромысло) с высотой h и вершиной в точке опоры. При повороте равнобедренного треугольника (коромысла) на угол α одно плечо увеличивается, а другое уменьшается. Поворот коромысла останавливается при равенстве крутящих моментов: m1*l1=m2*l2, m1/m2=l2/l1, где l1 и l2 — плечи крутящих моментов. Угол поворота коромысла можно отградуировать в единицах массы (количество). Чем меньше высота треугольника — h, тем меньше изменение плеч при повороте и больше чувствительность весов. Такое устройство соответствует состоянию устойчивого равновесия.

При нулевой высоте треугольника h=0 (как это иногда рисуют в некоторых статьях) коромысло из треугольника превращается в прямую линию. При повороте прямого коромысла длина плеч изменяется одинаково, соотношение l1/l2 не изменяется и равновесие не устанавливается. Такое устройство соответствует состоянию безразличного равновесия. При взвешивании на эквилибре положения устойчивого равновесия нет и равновесие определяют по безразличному положению коромысла при ручном отклонении влево и вправо.

Если точка опоры находится ниже точек подвеса, то такое устройство работает как компаратор или триггер, то есть определяет только какая из двух масс больше, а какая меньше (качество). Такое устройство соответствует состояниюнеустойчивого равновесия.

Разноплечные весы

Условия равновесия совсем другие, чем равноплечных весах. 
Одногиревые разноплечные весы, приведённые на рисунке справа, уменьшают число гирь (разновесов) и вероятность их потери, то есть имеют повышенную надёжность, но имеют сильно уменьшенный диапазон взвешиваемых грузов. Шкала весов нелинейна, сжата на краях диапазона весов и растянута в средней части диапазона весов.

Классификация весов


Согласно ГОСТ 29329-92 весы можно подразделить на следующие группы:

По области применения (эксплуатационному назначению):

  • автомобильные — такие весы позволяют обеспечить входной контроль поступающего сырья и контроль отгрузки продукции, а также осуществлять контроль осевой и колесной нагрузки автотранспорта в соответствии законодательным требованиям;

  • багажные;

  • бытовые;

  • вагонные;

  • вагонеточные;

  • для взвешивания скота;

  • для взвешивания молока;

  • крановые;

  • лабораторные;

  • медицинские;

  • монорельсовые;

  • палетные[6];

  • платформенные;

  • почтовые;

  • товарные;

  • торговые;

  • элеваторные.

По точности взвешивания:

  • специального класса точности (аналитические);

  • высокого класса точности (лабораторные);

  • среднего класса точности.

По способу установки на месте эксплуатации:

  • врезные;

  • встроенные;

  • напольные;

  • настольные;

  • передвижные;

  • подвесные;

  • стационарные.

По виду уравновешивающего устройства:

  • электромеханические (электронные);

  • механические.

По виду грузоприемного устройства:

  • бункерные;

  • ковшовые;

  • конвейерные;

  • крюковые;

  • монорельсовые;

  • платформенные.

По способу достижения положения равновесия:

  • с автоматическим уравновешиванием;

  • с полуавтоматическим уравновешиванием;

  • с неавтоматическим уравновешиванием.

В зависимости от вида отсчетного устройства:

  • с аналоговым отсчетным устройством;

  • с дискретным отсчетным устройством.

ГОСТ 24104-01, который описывает общие технические требования, предъявляемые к лабораторным весам, классифицирует их следующим образом:

По классу точности

  • специальный;

  • высокий;

  • средний.

Основные параметры весов


Наибольший предел взвешивания (НПВ) — верхняя граница предела взвешивания, определяющая наибольшую массу, измеряемую при одноразовом взвешивании.

Наименьший предел взвешивания (НМПВ) — нижняя граница предела взвешивания, определяется минимальным грузом, при одноразовом взвешивании которого относительная погрешность взвешивания не должна превышать допустимого значения.

Цена деления d — разность значений массы, соответствующих двум соседним отметкам шкалы весов с аналоговым отсчетным устройством, или значение массы, соответствующее дискретности отсчета цифровых весов.

Цена поверочного деления e — условная величина, выраженная в единицах массы, используемая при классификации весов и нормировании требований к ним.

Число поверочных делений n — значение НПВ/e.

Предельно допустимая погрешность измерений определяется ценой поверочного деления e. Обычно производитель весов гарантирует следующее соотношение: d = e. Чем ниже погрешность, тем выше точность измерений.

Погрешность весов в диапазоне измерений по абсолютному значению не должна превышать пределов допускаемой погрешности, приведенных в таблице (ГОСТ 24104-2001):

Интервалы взвешивания для весов класса точности

Пределы допускаемой погрешности

специального

высокого

среднего

при первичной поверке

в эксплуатации

До 50000 e включительно

До 5000 e включительно

До 500 e включительно

± 0,5e

± 1,0e

Св. 50000 e до 200000 e включительно

Св. 5000 e до 20000 e включительно

Св. 500 e до 2000 e включительно

± 1,0e

± 2,0e

Св. 200000 e

Св. 20000 e

Св. 2000 e

± 1,5e

± 3,0e


Пылевлагозащита IP (International Protection, «Ingress») — степени защиты, обеспечиваемые оболочками (IEC 60529, DIN 40050, ГОСТ 14254-96). Обычно обозначается как «IP» и две цифры, первая — степень защиты людей от доступа к опасным частям электрооборудования и самого изделия от попадания внутрь посторонних твёрдых предметов (от 0 до 6), а вторая — степень его защиты от вредных воздействий в результате проникновения воды (от 0 до 8). «Защиту от пыли» имеют изделия с IP5X и выше. «Защиту от брызг» — изделия с IPX3 и выше, герметизацию — IPX7 и IPX8. Максимальная степень защиты электрооборудования по ГОСТ — IP68 (пыленепроницаемое и герметичное при длительном нахождении под слоем воды 15 см от верхней точки). Комбинация IP69K (есть только в DIN) — означает пыленепроницаемость и влагозащищённость при чистке струёй высокого давления или паром (но, вообще говоря, не гарантирует герметичность при нахождении в воде).

Взрывозащита весов Ex. Для использования весов в среде огне- и взрывоопасных смесей, на предприятиях нефтеперерабатывающей, химической, горнодобывающей, пищевой промышленностей весовое оборудование выполняется во взрывозащищенном исполнении. Наличие маркировки Ex с последующими цифровыми обозначениями подразумевает, что в весах или другом оборудовании, которое находится во взрывоопасной среде, не может образоваться искра, способная вызвать взрыв или возгорание этой смеси.

Устройство выборки массы тары — устройство, позволяющее привести показания весов к нулю, когда тара помещается на грузоприемное устройство, с уменьшением НПВ на массу тары.

Устройство компенсации массы тары — устройство, позволяющее привести показания весов к нулю, когда тара помещается на грузоприемное устройство, без уменьшения НПВ.

Возможные источники погрешности электронных весов


При использовании высокоточных весов, таких, как весы аналитические или лабораторные, существует вероятность погрешности измерений. Источником таких погрешностей могут стать следующие факторы:

  • Статическая плавучесть;

  • Использование дефектного контрольного веса (используется для мошенничества при взвешивании);

  • Потоки воздуха, даже самые слабые, могут повлиять на результаты взвешивания;

  • Трение между движущимися частями весов;

  • Осевшая пыль на поддоне;

  • Весы могут быть не откалиброваны калибровочными гирями;

  • Механическая деформация деталей из-за перепадов температуры;

  • Гравитационное поле Земли может влиять на металлические детали в конструкции весов;

  • Магнитные поля от устройств, расположенных в непосредственной близости от весов, могут влиять на металлические компоненты весов;

  • Магнитные нарушения сенсоров;

  • Электростатическое поле;

  • Химическая реакция между взвешиваемым веществом и воздухом (или, в случае коррозии, весами);

Информация о работе Измерительное оборудование