Гидравлический расчёт трубопроводов

Автор работы: Пользователь скрыл имя, 09 Мая 2014 в 17:27, реферат

Краткое описание

При расчетах напорных трубопроводов основной задачей является либо определение пропускной способности (расхода), либо потери напора на том или ином участке, равно как и на всей длине, либо диаметра трубопровода на заданных расходе и потерях напора.
В практике трубопроводы делятся на короткие и длинные. К первым относятся все трубопроводы, в которых местные потери напора превышают 5…10% потерь напора по длине. При расчетах таких трубопроводов обязательно учитывают потери напора в местных сопротивлениях. К ним относят, к примеру, маслопроводы объемных передач.

Содержание

1. Гидравлический расчёт простых трубопроводов…………………….. 4
2. Соединения простых трубопроводов…………………………………. 8
3. Сложные трубопроводы……………………………………………….. 12
4. Трубопроводы с насосной подачей жидкостей………………………. 15
Список литературы……………………………………………………. 19

Прикрепленные файлы: 1 файл

гидравлический расчёт трубопроводов.rtf

— 1.28 Мб (Скачать документ)

         

                                      Содержание:

 

 

 

1. Гидравлический расчёт простых трубопроводов…………………….. 4

2. Соединения простых трубопроводов………………………………….   8

3. Сложные трубопроводы……………………………………………….. 12

4. Трубопроводы с насосной подачей жидкостей………………………. 15

     Список литературы……………………………………………………. 19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Гидравлический расчёт простых трубопроводов

 

При расчетах напорных трубопроводов основной задачей является либо определение пропускной способности (расхода), либо потери напора на том или ином участке, равно как и на всей длине, либо диаметра трубопровода на заданных расходе и потерях напора.

В практике трубопроводы делятся на короткие и длинные. К первым относятся все трубопроводы, в которых местные потери напора превышают 5…10% потерь напора по длине. При расчетах таких трубопроводов обязательно учитывают потери напора в местных сопротивлениях. К ним относят, к примеру, маслопроводы объемных передач.

Ко вторым относятся трубопроводы, в которых местные потери меньше 5…10% потерь напора по длине. Их расчет ведется без учета местных потерь. К таким трубопроводам относятся, например, магистральные водоводы, нефтепроводы.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые и сложные. Простыми называются последовательно соединенные трубопроводы одного или различных сечений, не имеющих никаких ответвлений. К сложным трубопроводам относятся системы труб с одним или несколькими ответвлениями, параллельными ветвями и т.д. К сложным относятся и так называемые кольцевые трубопроводы.

Простой трубопровод постоянного сечения

Жидкость по трубопроводу движется благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может создаваться несколькими способами: работой насоса, разностью уровней жидкости, давлением газа.

Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис. 1), имеет общую длину l и диаметр d, а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z1 и избыточное давление Р1, а в конечном сечении 2-2 - соответственно z2 и Р2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна н.

 

Рисунок 1 - Схема простого трубопровода

 

Запишем уравнение Бернулли для сечений 1-1 и 2-2. Поскольку скорость в обоих сечениях одинакова и б1 = б2, то скоростной напор можно не учитывать. При этом получим

 

 

Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Нпотр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Нрасп. Такой напор складывается из геометрической высоты Hпотр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.

Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту

 

 

а последнее слагаемое Уh - как степенную функцию расхода

 

Уh = KQm

 

тогда

 

Hпотр = Hст + KQm

 

где K - величина, называемая сопротивлением трубопровода;

Q - расход жидкости;

m - показатель степени, который имеет разные значения в зависимости от режима течения.

Для ламинарного течения при замене местных сопротивлений эквивалентными длинами сопротивление трубопровода равно

 

 

где lрасч = l + lэкв.

Численные значения эквивалентных длин lэкв для различных местных сопротивлений обычно находят опытным путем.

Для турбулентного течения, используя формулу Вейсбаха-Дарси, и выражая в ней скорость через расход, получаем

 

 

По этим формулам можно построить кривую потребного напора в зависимости от расхода. Чем больше расход Q, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор Нпотр. При ламинарном течении эта кривая изображается прямой линией (рис. 2, а), при турбулентном - параболой с показателем степени равном двум (рис. 2, б).

 

а)       б)

Рисунок 2 - Зависимости потребных напоров от расхода жидкости в трубопроводе

 

Крутизна кривых потребного напора зависит от сопротивления трубопровода K и возрастает с увеличением длины трубопровода и уменьшением диаметра, а также с увеличением местных гидравлических сопротивлений.

Величина статического напора Нст положительна в том случае, когда жидкость движется вверх или в полость с повышенным давлением, и отрицательна при опускании жидкости или движении в полость с пониженным давлением. Точка пересечения кривой потребного напора с осью абсцисс (точка А) определяет расход при движении жидкости самотеком. Потребный напор в этом случае равен нулю.

Иногда вместо кривых потребного напора удобнее пользоваться характеристиками трубопровода. Характеристикой трубопровода называется зависимость суммарной потери напора (или давления) в трубопроводе от расхода: Уh = f(q).

трубопровод соединение пропускной простой

2. Соединения простых трубопроводов

 

Простые трубопроводы могут соединяться между собой, при этом их соединение может быть последовательным или параллельным.

Последовательное соединение. Возьмем несколько труб различной длины, разного диаметра и содержащих разные местные сопротивления, и соединим их последовательно (рис. 3, а).

 

а)         б)

Рисунок 3 - Последовательное соединение трубопроводов

 

При подаче жидкости по такому составному трубопроводу от точки М к точке N расход жидкости Q во всех последовательно соединенных трубах 1, 2 и 3 будет одинаков, а полная потеря напора между точками М и N равна сумме потерь напора во всех последовательно соединенных трубах. Таким образом, для последовательного соединения имеем следующие основные уравнения:

 

Q1 = Q2 = Q3 = Q

 

УhM-N = Уh1 + Уh2 + Уh3

 

Эти уравнения определяют правила построения характеристик последовательного соединения труб (рис. 3, б). Если известны характеристики каждого трубопровода, то по ним можно построить характеристику всего последовательного соединения M-N. Для этого нужно сложить ординаты всех трех кривых.

Параллельное соединение. Такое соединение показано на рис. 4, а. Трубопроводы 1, 2 и 3 расположены горизонтально.

 

а)       б)

Рисунок 4 - Параллельное соединение трубопроводов

 

Обозначим полные напоры в точках М и N соответственно HM и HN, расход в основной магистрали (т.е. до разветвления и после слияния) - через Q, а в параллельных трубопроводах через Q1, Q2 и Q3; суммарные потери в этих трубопроводах через У1, У2 и У3.

Очевидно, что расход жидкости в основной магистрали

 

Q = Q1 = Q2 = Q3

 

Выразим потери напора в каждом из трубопроводов через полные напоры в точках М и N:

 

Уh1 = HM - HN; Уh2 = HM - HN; Уh3 = HM - HN

 

Отсюда делаем вывод, что

 

Уh1 = Уh2 = Уh3

 

т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом

 

Уh1 = K1Q1m; Уh2 = K2Q2m; Уh3 = K3Q3m

 

где K и m - определяются в зависимости от режима течения.

Из двух последних уравнений вытекает следующее правило: для построения характеристики параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик этих трубопроводов при одинаковых ординатах (У h).

Разветвленное соединение. Разветвленным соединением называется совокупность нескольких простых трубопроводов, имеющих одно общее сечение - место разветвления (или смыкания) труб.

 

а)      б)

Рисунок 5 - Разветвленный трубопровод

 

Пусть основной трубопровод имеет разветвление в сечении М-М, от которого отходят, например, три трубы 1, 2 и 3 разных диаметров, содержащие различные местные сопротивления (рис. 5, а). Геометрические высоты z1, z2 и z3 конечных сечений и давления P1, P2 и P3 в них будут также различны.

Так же как и для параллельных трубопроводов, общий расход в основном трубопроводе будет равен сумме расходов в каждом трубопроводе:

 

Q = Q1 = Q2 = Q3

 

Записав уравнение Бернулли для сечения М-М и конечного сечения, например первого трубопровода, получим (пренебрегая разностью скоростных высот)

 

 

Обозначив сумму первых двух членов через Hст и выражая третий член через расход (как это делалось в п. 1), получаем

 

HM = Hст 1 + KQ1m

 

Аналогично для двух других трубопроводов можно записать

 

HM = Hст 2 + KQ2m

HM = Hст 3 + KQ3m

 

Таким образом, получаем систему четырех уравнений с четырьмя неизвестными: Q1, Q2 и Q3 и HM.

Построение кривой потребного напора для разветвленного трубопровода выполняется сложением кривых потребных напоров для ветвей по правилу сложения характеристик параллельных трубопроводов (рис. 5, б) - сложением абсцисс (Q) при одинаковых ординатах (HM). Кривые потребных напоров для ветвей отмечены цифрами 1, 2 и 3, а суммарная кривая потребного напора для всего разветвления обозначена буквами ABCD. Из графика видно, что условием подачи жидкости во все ветви является неравенство HM > Hст1.

 

3. Сложные трубопроводы

 

Сложный трубопровод в общем случае составлен из простых трубопроводов с последовательным и параллельным их соединением (рис. 6, а) или с разветвлениями (рис. 6, б).

 

Рисунок 6 - Схемы сложных трубопроводов

 

Рассмотрим разомкнутый сложный трубопровод (рис. 6, б). магистральный трубопровод разветвляется в точках А и С. Жидкость подается к точкам (сечениям) B, D и E с расходами Q B и QD и QE.

Пусть известны размеры магистралей и всех ветвей (простых трубопроводов), заданы все местные сопротивления, а также геометрические высоты конечных точек, отсчитываемые от плоскости M - N и избыточные давления в конечных точках PB и PD и PE.

Для этого случая возможны два вида задач:

Задача 1. Дан расход Q в основной магистрали MA. Необходимо определить расходы Q B и QD и QE, а также потребный напор в точке М.

 

 

Задача 2. Дан напор в точке М. Определить расход в магистрали Q и расходы в каждой ветви.

Обе задачи решают на основе одной и той же системы уравнений, число которых на единицу больше числа конечных ветвей, а именно:

уравнение расходов:

 

Q = QB = QD = QE

 

уравнение равенства потребных напоров для ветвей CD и CE

 

Hст D + KCDQDm = Hст E + KCEQEm

 

уравнение равенства потребных напоров для ветви АВ и сложного трубопровода АСЕD

 

Hст B + KABQBm = Hст D + KCDQDm + KAC(QD + QE)m

 

выражение для потребного напора в точке М

 

 

Расчет сложных трубопроводов часто выполняют графоаналитическим способом, т.е. с применением кривых потребного напора и характеристик трубопроводов. Кривую потребного напора для сложного трубопровода следует строить следующим образом:

1) сложный трубопровод разбивают на ряд простых;

2) строят кривые потребных напоров для каждого из простых трубопроводов;

3) складывают кривые потребных напоров для ветвей (и параллельных линий, если они имеются) по правилу сложения характеристик параллельных трубопроводов;

4) полученную кривую складывают с характеристикой последовательно присоединенного трубопровода по соответствующему правилу (см. п. 2).

Таким образом, при расчете идут от конечных точек трубопровода к начальной точке, т.е. против течения жидкости.

Сложный кольцевой трубопровод. Представляет собой систему смежных замкнутых контуров, с отбором жидкости в узловых точках или с непрерывной раздачей жидкости на отдельных участках (рис. 7).

 

Рисунок 7 - Схема сложного кольцевого трубопровода

 

Задачи для таких трубопроводов решают аналогичным методом с применением электроаналогий (закон Кирхгофа). При этом основываются на двух обязательных условиях. Первое условие - баланс расходов, т.е. равенство притока и оттока жидкости для каждой узловой точки. Второе условие - баланс напоров, т.е. равенство нулю алгебраической суммы потерь напора для каждого кольца (контура) при подсчете по направлению движения часовой стрелки или против нее.

Информация о работе Гидравлический расчёт трубопроводов