Физика: электричество и магнетизм

Автор работы: Пользователь скрыл имя, 27 Ноября 2013 в 13:03, реферат

Краткое описание

В старину электрические явления в виде молнии н грома вызывали у людей жуткий страх. Позднее мы научились использовать электричество для своих нужд. А магнетизм, некогда не более чем диковинное явление, сегодня играет одну из важнейших ролей в гигантских генераторах, обеспечивающих нас энергией.

Прикрепленные файлы: 1 файл

Документ Microsoft Word (3).docx

— 1.61 Мб (Скачать документ)

«Физика: электричество  и магнетизм» 

 

Введение

В старину электрические  явления в виде молнии н грома  вызывали у людей жуткий страх. Позднее  мы научились использовать электричество  для своих нужд. А магнетизм, некогда  не более чем диковинное явление, сегодня играет одну из важнейших  ролей в гигантских генераторах, обеспечивающих нас энергией. Некоторые ткани сильно электризуются, когда пошитую из них одежду снимают через голову. Иногда заряд бывает настолько мощный, что можно услышать треск электрических искр, а в темном помещении — даже увидеть их. Эти искры представляют собой молнию в миниатюре и, подобно последней, возникают в результате резкого электрического разряда. Во время грозы наэлектризованное облако разряжается, при этом выделяется огромное количество энергии в виде света и тепла. 

 

 

Свет воспринимается нами как вспышки молнии, а тепловой поток вызывает внезапное, взрывоподобное расширение окружающего воздуха  — и мы слышим раскаты грома. Все  окружающие нас объекты содержат миллионы электрических зарядов, состоящих  из частиц, находящихся внутри атомов — основы всей материи. Центральная часть, или ядро, большинства атомов включает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрического заряда, в то время как протоны несут в себе положительный заряд. Вокруг ядра вращаются еще одни частицы — электроны, имеющие отрицательный заряд. Как правило, каждый атом имеет одинаковое количество протонов и электронов, чьи равные по величине, но противоположные заряды уравновешивают друг друга. В результате мы не ощущаем никакого заряда, а вещество считается незаряженным. Однако, если мы каким—либо образом нарушим это равновесие, то данный объект будет обладать общим положительным или отрицательным зарядом в зависимости от того, каких частиц в нем останется больше — протонов или электронов.

 

 

(Современные  парки аттракционов расходуют  очень много электричества для  освещения и приведения машин  в движение. Передвижные аттракционы обычно имеют собственные генераторы для производства электроэнергии.)

 

 

Электричество и трение

Различные материалы иногда электризуются при трении друг о  друга, поскольку при этом происходит переход электронов из одного материала  в другой. Например, если вы пользуетесь  пластмассовой расческой, электроны  волос переходят на нее. В результате расческа оказывается отрицательно заряженной, а волосы имеют положительный  заряд, так как теперь в них  больше протонов, чем электронов. Заряженные объекты притягивают незаряженные, и поэтому к расческе пристают небольшие кусочки бумаги.

 

 

(Машина Уимсхерта - один из первых генераторов - производила статическое электричество за счет трения между вращающимся стеклянным диском и неподвижным металлическим.) 

 

 

 

Притяжение и отталкивание

Заряженные объекты либо притягивают, либо отталкивают друг друга. Если они противоположные  заряды, то между ними действует  сила притяжения. Но если у них одноименные  заряды, то тогда имеет место сила отталкивания. Считается, что объект, наэлектризованный за счет трения. обладает статическим электричеством, поскольку заряд может оставаться внутри него почти бесконечно. Такой объект останется заряженным до тех пор, пока в нем не будет восстановлен баланс положительных и отрицательных частиц. Это достигается путем предоставления возможности перетекания заряженных частиц из данного объекта или в него. Например, объект, получивший отрицательный заряд ввиду передачи ему дополнительного количества электронов, можно разрядить, если позволить лишним электронам вновь покинуть его. А положительно заряженный объект в результате потери некоторого количества электронов можно разрядить, дав возможность недостающим электронам вернуться назад. Любое подобное движение заряженных частиц называется электрическим током.

 

 

(Испытание высоковольтного  изолятора. Напряжение в верхней части изолятора постепенно повышается, пока не будет нарушена изоляция окружающего воздуха, в результате чего возникают гигантские искровые разряды.)

 

 

 

Проводники

Вещества, позволяющие току проходить через них, называются проводниками. Металлы и графит, а также обычная разновидность  углерода являются хорошими проводниками электричества. К материалам, которые обычно не проводят электричество, относятся янтарь, нефть, воск, стекло, бумага и пластмасса. Такие материалы называются диэлектриками. В 18-ом веке многие ученые проводили опыты с электричеством, используя машины, обеспечивающие трение одного материала о другой для получения мощного электрического заряда. Однако такой заряд быстро исчезал в результате внезапного выброса тока при подсоединении проводника к оборудованию. Гораздо более пригодным для многих опытов был бы источник, способный производить достаточно стабильный ток в течение более длительного периода времени. В 1790-е годы итальянский ученый Алессандро Вольта нашел нужное решение — он изобрел гальванический элемент и батарею.

 

 

(Конденсаторы  хранят заряд на металлической  пластине. Переменные конденсаторы (вверху справа) используются для радиосигналов. Малые конденсаторы такого типа применяются в радиоприемниках. (в центре справа)

 

 

 

Элементы и цепи

Гальванический элемент  преобразует химическую энергию  в электричество. Эти элементы часто  соединяют друг с другом или группируют для получения более мощного  источника электроэнергии в точках подключения, или полюсах. Такие  соединения называются батареи. Однако единичные элементы также часто именуют батареями. Цепь состоит из источника электричества (такого как батарея) и пути тока, по которому ток может протекать от одного полюса источника к другому. Электроток представляет собой поток электронов; его можно сравнить с потоком воды, движущимся по трубе. Чтобы заставить воду течь по трубе, необходимо создать давление, то же самое нужно сделать с электронами, чтобы заставить их протекать по проводу. Такое электрическое давление, или напряжение, создаваемое, например, батареей, измеряется в вольтах, а образуемый при этом ток — в амперах. Поток воды, получаемый при определенном давлении, зависит от вида используемой трубы. Например, длинная узкая труба будет оказывать сопротивление потоку воды внутри нее. А длинный и тонкий провод будет оказывать большее сопротивление электротоку, чем короткий и толстый провод из того же материала.

 

 

(Магнитное поле (крайнее слева) - это область,  где присутствует магнетизм. Поле магнита можно показать в виде силовых линий между его полюсами. Магниты (в центре) притягиваются друг к другу, если совместить их противоположные полюса, и взаимно отталкиваются при попытке совместить одноименные полюса.)

 

 

 

Сопротивление

Единицей измерения электрического сопротивления является «ом». Поскольку  медь имеет относительно низкое сопротивление  и, следовательно, является хорошим  проводником электричества, она  широко применяется в кабелях. Еще  лучшим проводником является серебро, но оно слишком дорогостояще для  широкого применения. В некоторых  цепях используются элементы, которые  намеренно изготовлены с высоким  сопротивлением. Такие устройства —  резисторы — часто используются для ограничения протекания тока на отдельных участках электронных схем.

 

 

(Малая часть  разнообразных резисторов, используемых  в электронных схемах. Сопротивление некоторых из них обозначается полосками цветовой кодировки. Два из показанных резисторов являются высокомощными и имеют металлические ушки для крепления к металлическому корпусу. Этот корпус служит отводом тепла, создаваемого в резисторах, и таким образом предотвращает их перегорание.)

 

 

 

Магнетизм

Считается, что греческий  философ Фалес Милетский первым изучал странное притяжение магнитным  железняком обычного железа. Это происходило  около 600-го года до н. э., и прошли века, прежде чем магнетизм нашел практическое применение в виде магнитного компаса. Вероятно, в Китае приблизительно к 200 году н. э. уже имелся несовершенный  образец магнитного компаса, однако в Европе он появился не ранее 1200 г. На протяжении многих столетий никто  не мог разгадать тайну, почему кусок  природного магнитного железняка (если он мог свободно перемещаться) всегда указывал одно и то же направление. Сегодня нам известно, что железо и другие магнитные материалы  состоят из крошечных намагниченных  частиц, называемых доменами. Обычно они  располагаются в различных направлениях, а металл не проявляет в целом  никаких магнитных свойств. Если же домены выстраиваются таким образом, что все они направлены в одну сторону то металл намагничивается и притягивает другие куски железа.

 

 

(Ребристые стеклянные  изоляторы на 400 кв ЛЭП отделяют провода от опор. Провисающие петли проводов соединяют главные участки линии электропередачи.)

 

 

 

Два полюса

Все магниты такого рода имеют одну общую черту: их намагниченность  сконцентрирована на двух участках, которые  называются северный и южный полюсы магнита. Они получили такое название в связи с тем, что, когда магнит может свободно вращаться (в подвешенном или плавучем состоянии), эти части магнита поворачиваются в направлении Северного и Южного полюсов Земли, которая сама по себе является гигантским магнитом. В этом заключается принцип действия магнитного компаса. Оба полюса магнита притягивают не намагниченное железо. Но если приблизить два магнита, северный полюс одного из них будет притягивать южный полюс другого. Другими словами разноименные полюса притягиваются. И наоборот — два северных полюса будут отталкивать друг друга так же, как и два южных. Поэтому говорят, что одноименные полюса взаимно отталкиваются. В таком случае, однако, может показаться странным, что северный полюс магнита склонен поворачиваться в сторону Северного полюса Земли. Это происходит потому, что магнитный север (магнитный полюс вблизи области, которую мы называем Северным полюсом) фактически является южным магнитным полюсом. Между электричеством и магнетизмом существует тесная связь, но об этом стало известно лишь в 1819 году, когда датский профессор физики Ханс Эрстед продемонстрировал своим студентам некоторые свойства электричества.

 

 

(Вверху: железные  опилки показывают магнитные  силовые линии внутри проволочной  катушки, по которой проходит  ток, и вокруг нее. Внизу: в настоящем электромагните внутри обмотки находится железный сердечник для увеличения магнитной силы.)

 

 

Открытие Эрстеда

Эрстед подсоединил провод к полюсам батареи, чтобы показать, что он нагревается при прохождении  через него сильного электрического тока. Однако произошло нечто совершенно неожиданное. Когда он подсоединил  провод к батарее, стрелка находившегося  рядом компаса отклонилась и  больше не указывала на север. Эрстед понял, что проходящий через провод электроток создавал магнетизм, воздействующий на компас. Так он открыл одно из важнейших  явлений в науке — электромагнетизм.

 

 

(При движении  магнита внутри катушки на  ней индуцируется напряжение. Это напряжение вызывает движение тока, если концы катушки соединены между собой или подсоединены к проводнику. В данном случае катушка подключена к вольтметру. Проходя через него, ток заставляет отклоняться стрелку прибора и указывать величину напряжения.)

 

 

 

Электромагнетизм

Ток, проходящий через провод, создает относительно слабый магнетизм. Но вскоре ученые нашли способ усиления этого явления. Более выраженные магнитные свойства можно было получить, сделав проволочную обмотку в  форме катушки и намотав ее вокруг железного стержня. Такое  устройство называется электромагнитом.

 

 

(Майкл Фарадей,  сделавший важные открытия, касающиеся  связи между электричеством и  магнетизмом.)

 

 

Двигатели и генераторы

Если провод, находящийся  вблизи постоянного магнита, подсоединить к батарее, он может переместиться  под действием создаваемого магнетизма. В 1821 г. английский ученый Майкл Фарадей  построил просто машину, в кото рой токонесущий провод двигался вокруг постоянного магнита. Эрстед показал, что электричество может создавать магнетизм, а Фарадей сообразил. что можно использовать магнетизм для получения электричества. Он впервые продемонстрировал это в 1831 г., когда получил электричество. Перемещая стержневой магнит внутри проволочной катушки. Он также показал, что результат остается неизменным независимо от того двигался ли магнит или катушка. Этот принцип применяется в современных генераторах, снабжающих электроэнергией наши дома, магазины, офисы и заводы.

 


Информация о работе Физика: электричество и магнетизм