Динамика твердого тела

Автор работы: Пользователь скрыл имя, 18 Ноября 2015 в 19:38, реферат

Краткое описание

В общем случае абсолютно твердое тело имеет 6 степеней свободы, и для описания его движения необходимы 6 независимых скалярных уравнений или 2 независимых векторных уравнения.
Вспомним, что твердое тело можно рассматривать как систему материальных точек, и, следовательно, к нему применимы те уравнения динамики, которые справедливы для системы точек в целом.

Содержание

Введение
o I. Вращение твердого тела вокруг неподвижной оси
- Кинетическая энергия вращающегося тела и работа внешних сил (ось вращения неподвижна)
- Свободные оси. Устойчивость свободного вращения
- Центр удара
o II. Плоское движение твердого тела
- Кинетическая энергия при плоском движении
Заключение

Прикрепленные файлы: 1 файл

динамика твердого тела.docx

— 233.95 Кб (Скачать документ)

И только в том случае, когда ось вращения совпадает с главной центральной осью инерции тела (рис.3.6в), раскрученный и предоставленный сам себе стержень не оказывает на подшипники никакого воздействия. Такие оси называют свободными осями, потому что, если убрать подшипники, они будут сохранять свое направление в пространстве неизменным.

Иное дело, будет ли это вращение устойчивым по отношению к малым возмущениям, всегда имеющим место в реальных условиях. Опыты показывают, что вращение вокруг главных центральных осей с наибольшим и наименьшим моментами инерции является устойчивым, а вращение вокруг оси с промежуточным значением момента инерции - неустойчивым. В этом можно убедиться, подбрасывая вверх тело в виде параллелепипеда, раскрученное вокруг одной из трех взаимно перпендикулярных главных центральных осей (рис. 3.7). Ось AA' соответствует наибольшему, ось BB' - среднему, а ось CC' - наименьшему моменту инерции параллелепипеда. Если подбросить такое тело, сообщив ему быстрое вращение вокруг оси AA' или вокруг оси CC', можно убедиться в том, что это вращение является вполне устойчивым. Попытки заставить тело вращаться вокруг оси BB' к успеху не приводят - тело движется сложным образом, кувыркаясь в полете.

Рис. 3.7.


В телах вращения устойчивой оказывается свободная ось, соответствующая наибольшему моменту инерции. Так, если сплошной однородный диск подвесить к быстровращающемуся валу электромотора (рис. 3.8, ось вращения вертикальна), то диск довольно быстро займет горизонтальное положение, устойчиво вращаясь вокруг центральной оси, перпендикулярной к плоскости диска.

Рис. 3.8.


Центр удара.

Опыт показывает, что если тело, закрепленное на оси вращения, испытывает удар, то действие удара в общем случае передается и на ось. При этом величина и направление силы, приложенной к оси, зависят от того, в какую точку тела нанесен удар.

Рассмотрим сплошной однородный стержень АВ, подвешенный в точке А на горизонтальной, закрепленной в подшипниках оси OO' (рис. 3.9). Если удар (короткодействующая сила F ( нанесен близко к оси вращения, то ось прогибается в направлении действия силы F (рис. 3.9а). Если удар нанесен по нижнему концу стержня, вблизи точки В, то ось прогибается в противоположном направлении (рис. 3.9б). Наконец, если удар нанесен в строго определенную точку стержня, называемую центром удара (рис. 3.9в, точка С), то ось не испытывает никаких дополнительных нагрузок, связанных с ударом. Очевидно, в этом случае скорость поступательного движения, приобретаемого точной А вместе с центром масс O, будет компенсироваться линейной скоростью вращательного движения вокруг центра масс О (оба эти движения инициируются силой F и происходят одновременно).

Рис. 3.9.


Вычислим, на каком расстоянии  от точки подвеса стержня находится центр удара. Уравнение моментов относительно оси вращения OO' дает

(3.15)


Сил реакции со стороны оси, как предполагается, при ударе не возникает, поэтому на основании теоремы о движении центра масс можно записать

(3.16)


где  - масса тела,  - скорость центра масс. Если  - расстояние от оси до центра масс тела, то

(3.17)


и в результате из уравнения моментов и уравнения движения центра масс находим

(3.18)


При этом точка C (центр удара) совпадает с так называемым центром качания данного физического маятника - точкой, где надо сосредоточить всю массу твердого тела, чтобы полученный математический маятник имел такой же период колебаний, как и данный физический.

В случае сплошного однородного стержня длиной  имеем:


Замечание. Полученное выражение для  (3.18) справедливо и для произвольного твердого тела. При этом надо только иметь в виду, что точка подвеса тела А и центр масс О должны лежать на одной вертикали, а ось вращения должна совпадать с одной из главных осей инерции тела, проходящих через точку А.

Пример 1. При ударах палкой длиной  по препятствию рука "не чувствует" удара (не испытывает отдачи) в том случае, если удар приходится в точку, расположенную на расстоянии  свободного конца палки.

Пример 2. При горизонтальном ударе кием по бильярдному шару (рис. 3.10) шар начинает качение без проскальзывания в том случае, еcли удар нанесен в точку, находящуюся на высоте


от поверхности бильярда, то есть на  выше центра шара. Если удар будет нанесен ниже, качение будет сопровождаться скольжением в направлении движении шара. Если удар нанесен выше, то шар в точке касания с бильярдным столом будет проскальзывать назад.

Рис. 3.10.


Рассмотренные примеры формально не относятся к вращению твердого тела вокруг неподвижной оси, однако все приведенные выше соображения о центре удара, очевидно, остаются в силе и в этих случаях.

II. Плоское движение твердого  тела.

Напомним, что при плоском движении все точки тела движутся в плоскостях, параллельных некоторой неподвижной плоскости, поэтому достаточно рассмотреть движение одного из сечения тела, например, того, в котором лежит центр масс. При разложении плоского движения на поступательное и вращательное скорость поступательного движения определена неоднозначно - она зависит от выбора оси вращения, однако угловая скорость вращательного движения оказывается одной и той же.

Если в качестве оси вращения выбрать ось, проходящую через центр масс, то уравнениями движения твердого тела будут:

1. Уравнение движения центра  масс

(3.19)


2. Уравнение моментов относительно  оси, проходящей через центр масс

(3.20)


Особенностью плоского движения является то, что ось вращения сохраняет свою ориентацию в пространстве и остается перпендикулярной плоскости, в которой движется центр масс. Еще раз подчеркнем, что уравнение моментов (3.20) записано относительно, в общем случае, ускоренно движущегося центра масс, однако, как было отмечено в начале лекции, оно имеет такой же вид, как и уравнение моментов относительно неподвижной точки.

В качестве примера рассмотрим задачу о скатывании цилиндра с наклонное плоскости. Приведем два способа решения этой задачи с использованием уравнений динамики твердого тела.

Первый способ. Рассматривается вращение цилиндра относительно оси, проходящее через центр масс (рис. 3.11).

Рис. 3.11.


Система уравнений (3.19 - 3.20) имеет вид:


К этой системе необходимо добавить уравнение кинематической связи

(3.23)


Последнее уравнение получается из условия, что цилиндр скатывается без проскальзывания, то есть скорость точки М цилиндра равна нулю.

Уравнение движения центра масс (3.1) запишем для проекций ускорения и сил на ось x вдоль наклонной плоскости, а уравнение моментов (3.22) - для проекций углового ускорения и момента силы трения на ось y , совпадающую с осью цилиндра. Направления осей x и у выбраны согласованно, в том смысле, что положительному линейному ускорению оси цилиндра соответствует положительное же угловое ускорение вращения вокруг этой оси. В итоге получим:


откуда

(3.27)


Следует подчеркнуть, что  - сила трения сцепления - может принимать любое значение в интервале от О до  (сила трения скольжения) в зависимости от параметров задачи. Работу эта сила не совершает, но обеспечивает ускоренное вращение цилиндра при его скатывании с наклонной плоскости. В данном случае

(3.28)


Если цилиндр сплошной, то

(3.29)


Качение без проскальзывания определяется условием

(3.30)


где  - коэффициент трения скольжения,  - сила реакции опоры. Это условие сводится к следующему:

(3.31)


или

(3.32)


Второй способ. Рассматривается вращение цилиндра относительно неподвижной оси, совпадающей в данный момент времени с мгновенной осью вращения (рис. 3.12).

Рис. 3.12.


Мгновенная ось вращения проходит через точку соприкосновения цилиндра и плоскости (точку М). При таком подходе отпадает необходимость в уравнении движении центра масс и уравнении кинематической связи. Уравнение моментов относительно мгновенной оси имеет вид:

(3.33)


Здесь

(3.34)


В проекции на ось вращения (ось y)

(3.35)


Ускорение центра масс выражается через угловое ускорение

(3.36)


Кинетическая энергия при плоском движении.

Кинетическая энергия твердого тела представляет собой сумму кинетических энергий отдельных частиц:

(3.37)


где  - скорость центра масс тела,  - скорость i-й частицы относительно системы координат, связанной с центром масс и совершающей поступательное движение вместе с ним. Возводя сумму скоростей в квадрат, получим:

(3.38)


так как  (суммарный импульс частиц в системе центра масс равен нулю).

Таким образом, кинетическая энергия при плоском движении равна сумме кинетических энергий поступательного и вращательного движений (теорема Кенига). Если рассматривать плоское движение как вращение вокруг мгновенной оси, то кинетическая энергия тела есть энергия вращательного движения.

В этой связи задачу о скатывании цилиндра с наклонной плоскости можно решить, используя закон сохранения механической энергии (напомним, что сила трения при качении без проскальзывания работу не совершает).

Приращение кинетической энергии цилиндра равно убыли его потенциальное энергии:

(3.39)


Здесь  - длина наклонной плоскости,  - момент инерции цилиндра относительно мгновенной оси вращения.

Поскольку скорость оси цилиндра  то

(3.40)


Дифференцируя обе части этого уравнения по времени, получим

(3.41)


откуда для линейного ускорения  оси цилиндра будем иметь то же выражение, что и при чисто динамическом способе решения (см. (3.27, 3.36)).

Замечание. Если цилиндр катится с проскальзыванием, то изменение его кинетической энергии будет определяться также и работой сил трения. Последняя, в отличие от случая, когда тело скользит по шероховатой поверхности, не вращаясь, определяется, в соответствии с (3.14), полным углом поворота цилиндра, а не расстоянием, на которое переместилась его ось.

Заключение

Динамика твердого тела на данном этапе используется для тел, движущихся в сплошной среде.

В задаче о полете тела с тремя несущими поверхностями при наличии динамической асимметрии определены условия, при которых проявляются синхронизмы 1:3. С увеличением угловой скорости вращения тела около продольной оси даже на поверхности рассеивания заметно ослабление этого эффекта.

Информация о работе Динамика твердого тела