Цифровой запоминающий осциллограф ЦЗО_01 на базе ПЭВМ типа IBM PC

Автор работы: Пользователь скрыл имя, 04 Февраля 2013 в 11:08, курсовая работа

Краткое описание

Для того чтобы понять какую практическую цель преследуют осциллографы, необходимо знать следующее. Оосциллограф образован от слов «осциллум»- колебания, «графо» - пишу. Таким образом, осциллографы - это специальные измерительные приборы, при помощи которых наблюдают зависимости двух и более быстро изменяющихся величин. Если говорить более простым языком, то осциллографы – это приборы, на экране которых отображаются кривые напряжения или тока, как функции времени, т.е. эти приборы, предназначены для наблюдения за видами колебаний.

Содержание

Введение…………………………………………………………………….…3
1 Типы осциллографов…………………………………………………….….4
2 Параметры осциллографов…………………………………………………4
3 Структура и принцип работы цифрового осциллографа…………………5
4 Адреса производителей осциллографов…………………………………..7
5 Расчет вероятностной оценки суммарной случайной погрешности….....9
6 Вывод…………………………………………………………………….....12
7 Список используемой литературы…………………………………….….13

Прикрепленные файлы: 1 файл

Содержание.doc

— 366.87 Кб (Скачать документ)

Дальше следует отметить, что при наличие на предприятии локальной сети, рациональней будет подключение через HAB( если длина линии подключения не превышает 100м). Это обеспечит более качественный доступ к сетевым ресурсам.

5.9. КЛАВИАТУРА, МЫШЬ.

Рассматривая эти устройства ввода и манипуляции, следует сказать, что они тоже имеют большое число модификаций. Их различие не играют существенной роли в процессе эксплуатации нашей РС. И их выбор - дело вкуса непосредственно пользователя. Количество клавиш или инфракрасный порт не могут существенно отразится на скорости работы ПО. Поэтому ограничимся использованием стандартной конфигурации.

5.10. КОРПУС

Если использовать медицинские термины типа “процессор-сердце”, “оперативная память-мозги” и т.д., то корпус-скелет компьютера. И к выбору этого “дома” для комплектующих нужно отнестись с должным вниманием. Начнем с того,что на данный момент существует два основных стандарта АТ и АТХ. Основные отличия между ними следующие: блоки питания стандарта АТХ вырабатывают напряжение 3,3В(в дополнение к стандартным 5 и 12В), способны “включаться и выключаться” программно, а также имеют охлаждающий вентилятор тянущего типа. Они имеют другой разъем питания материнской платы. Сами корпуса имеют разные задние стенки. Однозначно сказать, какой из этих стандартов лучше, нельзя. Под АТ по прежнему выпускается большое количество материнских плат. Поэтому будем руководствоваться типом выбранных материнских плат.

В результате проведенного анализа наших комплектующих, для приобретения я рекомендую два варианта комплектации. Привожу их перечень в таблице 5.10.1

Таблица 5.10.1.

Комплектующие

Вариант 1 АТ

Вариант 2 АТХ

МВ

(кэш 512Кб)

TOMATOBOARD 5SVA на чипсете VIA Appollo VPX

P5T30-A4 на чипсете Intel 430TX

Процессор

AMD K6-PR166MMX

Pentium 166MMX

ОЗУ

SIMM 16Mb EDO

DIMM 16Mb SDRAM

HDD

1.7Gb UDMA

Fireball SE 2.1

CD-ROM

36x ACER 636A UDMA

Модем

Zoltrix 56 000 FAX

SOUND

Creative SB VIBRA 16

АС

TYPHON 25W

Видеокарта

2Mb PCI S3-Trio 64V2DX

Монитор

SAMSUNG

14” 400B Digital

15” 500b

клавиатура

104 кл. MITSUMI

мышь

MITSUMI 2 but

FDD

1,44 Mitsumi (3.5”)


Страница 1 из 2

В заключение хочу отметить, что выбор данной конфигурации не есть единственно правильный. И реально выявить все его достоинства и недостатки, можно лишь в процессе эксплуатации.

 

 

Other

Реферат

на тему: “Светолучевые и      электроннолучевые осциллографы”.

 
 
 
 
 
                                                                                             

Выполнил:

 

 

                                                                                             Проверил:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Иркутск 2004

 
 
 

План: 

 

 

  

 

 

  

Электроннолучевой осциллограф…………………………………………….2

Светолучевой осциллограф……………………………………………………6

Список использованной литературы………………………………………….8

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

 

 

 

Электроннолучевой осциллограф

 

  

Прибор для наблюдения функциональной связи между двумя или несколькими величинами (параметрами и функциями; электрическими или преобразованными в электрические). Для этой цели сигналы параметра и функции подают на взаимно перпендикулярные отклоняющие пластины осциллографической электроннолучевой трубки и наблюдают, измеряют и фотографируют графическое изображение зависимости на экране трубки. Это изображение называют осциллограммой. Чаще всего осциллограмма изображает форму электрического сигнала во времени. По ней можно определить полярность, амплитуду и длительность сигнала. Осциллограф часто имеет проградуированные в в по вертикали и в сек по горизонтали шкалы на экране трубки. Это обеспечивает возможность одновременного наблюдения и измерения временных и амплитудных характеристик всего сигнала или его части, а также измерения параметров случайных или однократных сигналов. Иногда изображение исследуемого сигнала сравнивают с калибровочным сигналом или применяют компенсационный метод измерений.

 

 
   

 

 

Рис1 (Блок-схема электронного осциллографа).

 

Исследуемый сигнал А (рис. 1) поступает на вход усилителя вертикального отклонения, предназначенного для согласования величины отклонения луча с величиной входного сигнала. Коэффициент усиления регулируется. Горизонтальное перемещение луча создаётся генератором развёртки, который формирует для этой цели пилообразное напряжение Г (линейно изменяющееся во времени). Пилообразное напряжение поступает на вход усилителя горизонтального отклонения, который обеспечивает на выходе напряжение Е, подаваемое на горизонтально отклоняющие пластины трубки. Электронный луч перемещается по горизонтали с постоянной скоростью, создавая таким образом линейную развертку времени. Скорость развертки регулируется.

Для получения стабильного изображения исследуемого сигнала на экране трубки каждая новая развёртка должна начинаться с одной и той же фазы сигнала. Это обеспечивается подачей исследуемого сигнала с вертикального усилителя на синхронизатор, который формирует импульс В запуска генератора развёртки в момент, соответствующий выбранной точке исследуемого сигнала. Для того чтобы электронный луч был виден только во время прямого хода луча (t- t1), генератор вырабатывает импульс Д подсвета луча, который подаётся на управляющую сетку (модулятор) трубки. Он имеет положительную полярность, прямоугольную форму и длительность, равную длительности прямого хода развёртки. Т. к. для запуска генератора развёртки используется исследуемый сигнал, а синхронизатор и генератор развёртки срабатывают не мгновенно, а с некоторым запаздыванием (доли мксек), то для наблюдения начального участка сигнала в тракт вертикального отклонения вводится линия задержки, компенсирующая время срабатывания синхронизатора и генератора развёртки (время задержки сигнала несколько превышает время срабатывания). При отсутствии линии задержки на экране трубки можно видеть только ту часть исследуемого сигнала, которая следует после момента t(кривая Б).

Осциллограф содержит также источники высоковольтного и низковольтного питания. Первый используется только для питания трубки, а второй - для питания электронной схемы остальных узлов и блоков прибора.

Важными характеристиками осциллографа, определяющими его эксплуатационные возможности, являются: 1) коэффициент отклонения - отношение напряжения входного сигнала к отклонению луча, вызванному этим напряжением (в /см или в /дел); 2) полоса пропускания - диапазон частот, в пределах которого коэффициент отклонения осциллографа уменьшается не более чем на 3 дб относительно его значения на средней (опорной) частоте; 3) время нарастания tн, в течение которого переходная характеристика осциллографа нарастает от 0,1 до 0,9 от амплитудного значения (часто употребляется вместо полосы пропускания); верх. граничная частота полосы пропускания f в связана с tн соотношением: ; 4) коэффициент развертки - отношение времени tн к величине отклонения луча, вызванного напряжением развёртки за это время (в сек /смили сек /дел); 5) скорость записи - максимальная скорость перемещения луча по экрану, при которой обеспечивается фотографирование или запоминание (для запоминающего осциллографа) однократного сигнала. Перечисленные параметры определяют амплитудный, временной и частотный диапазоны исследуемых сигналов.

Погрешность измерения сигналов зависит от погрешностей коэффициента отклонения и коэффициента развёртки (обычно ~2-5%). от частоты (длительности) исследуемого сигнала и полосы пропускания (времени нарастания сигнала tн). Если измеряемый параметр сигнала ³ 5 tн, то он воспроизводится на экране осциллографа с погрешностью £ 2%.

Вместо погрешностей коэффициентов отклонения и развёртки для осциллографов часто указывают близкие им погрешность измерения амплитуды стандартного сигнала (синусоидального определённой частоты или прямоугольного импульса достаточно большой длительности) и погрешность измерения временных интервалов.

Для одновременного исследования двух или более сигналов используются многолучевые осциллографы, а также многоканальные электронные коммутаторы, встраиваемые в тракт вертикального отклонения. Электронный коммутатор обеспечивает получение изображения нескольких сигналов на однолучевой трубке при последовательном подключении источников этих сигналов к тракту вертикального отклонения. Электронные коммутаторы используются, как правило, для исследования временных (фазовых) соотношений нескольких синхронных сигналов.

Для изучения части исследуемого сигнала, в том числе отстоящей на значительное время от его начала, применяется растяжка развёртки (часть пилообразного напряжения, подаваемого на вход усилителя горизонтального отклонения, усиливается в несколько раз, что эквивалентно увеличению в несколько раз длины развёртки) или задержка запуска развёртки (задержанная развёртка). Задержанная развёртка эквивалентна растяжке развёртки в несколько тысяч раз.

Наибольшими функциональными возможностями обладают осциллографы со сменными блоками в трактах вертикального и горизонтального отклонения. Перестановкой блоков можно получить осциллографы с различными характеристиками: широкополосный, высокочувствительный, 2- или 4-канальный, дифференциальный и т.д. В зависимости от особенностей схемы осциллографы делятся на универсальные, запоминающие, стробоскопические, скоростные и специальные (см. табл.).

Некоторые типы осциллографов и их характеристики:

 

Тип, страна

Обозначение

Полоса пропуска-ния,

Мгц

Коэффициент отклонения, мв/дел - в/дел

Коэффициент развёртки, мксек/дел - сек/дел

Скорость записи, км/сек

Универсальный, СССР

Универсальный, СССР

Универсальный, США

Скоростной, СССР

Стробоскопический, СССР

Запоминающий, Нидерланды

Запоминающий, СССР

Запоминающий, СССР

Стробоскопический, Япония

Телевизионный, СССР

С1-65

С1-75

Tektronix-485

С7-10А

С7-11

 

Philips PM-3251

 

C8-12

C8-13

Iwatsu SAS-5009 В

 

С9-57

0-35

0-250

0-350

0-1500

0-5000

 

0-50

 

0-50

0-1

0-18000

 

0-15

5-5

10-1

5-5

100-0,2

5-0,2

 

2-20

 

10-5

0,5-20

10-0,2

 

10-10

0,01-0,05

0,002-0,1

0,001-0,5

2,5×10-5-0,1×10-6

5-10-5-1×10-5

 

0,01-0,5

 

0,01-15

0,01-15

10-5-5×10-2

 

0,1-0,02

-

1500

24000

-

-

 

10

 

4000

5

-

 

-

 

Универсальными называются осциллографы, построенные по функциональной схеме рис. 1. Запоминающие осциллографы  имеют трубку с накоплением заряда. Они сохраняют изображение сигнала длительное время и поэтому удобны для исследования однократных и редко повторяющихся сигналов. Скорость записи запоминающих осциллографов достигает нескольких тыс. км/сек. Время воспроизведения записанного изображения для различных моделей лежит в пределах 1-30 мин. Запоминающие осциллографы, как правило, обладают свойством сохранять изображение при выключении осциллографа и последующем его включении через несколько суток, функциональная схема запоминающих осциллографов отличается от рис. 1 дополнительным блоком, управляющим режимом работы запоминающей трубки (запись, воспроизведение изображения и его стирание).

В стробоскопическом осциллографе  используется принцип последовательного стробирования мгновенных значений сигнала для преобразования (сжатия) его спектра; при каждом повторении сигнала определяется (отбирается) мгновенное значение сигнала в одной точке. К приходу следующего сигнала точка отбора перемещается по сигналу, и так до тех пор, пока он не будет весь простробирован. Преобразованный сигнал, представляющий собой огибающую мгновенных значений входного сигнала, повторяет его форму. Длительность преобразованного сигнала во много раз превышает длительность исследуемого, и, следовательно, имеет место сжатие спектра, что эквивалентно соответствующему расширению полосы пропускания осциллографа . Стробоскопический осциллограф наиболее широкополосны и позволяют исследовать периодические сигналы длительностью ~ 10-11 сек.

Скоростные осциллографы имеют трубки с вертикально отклоняющей системой типа "бегущей волны". Они характеризуются широкополосностью (1-5×10Мгц) и большой скоростью записи. Скоростные осциллографы не имеют усилителя в тракте вертикального отклонения и, в отличие от стробоскопических, позволяют исследовать не только периодические, но и однократные быстропротекающие сигналы. Специальные осциллографы служат для исследования телевизионных или высоковольтных сигналов и т.п.

 

Светолучевой осциллограф

Шлейфовый осциллограф, светолучевой, вибраторный осциллограф, прибор для визуального наблюдения и автоматической регистрации фотографическим методом физических процессов (например, деформации, изменений температуры, давления, скорости), периодических (с частотой повторения от долей гц до 10-15 кгц), апериодических и одиночных. На входе Ш. о. изменение физической величины, характеризующей исследуемый процесс, преобразуется соответствующими датчиками в пропорциональное изменение электрического напряжения или тока.

Информация о работе Цифровой запоминающий осциллограф ЦЗО_01 на базе ПЭВМ типа IBM PC