Қатты дененің физика элементтері

Автор работы: Пользователь скрыл имя, 15 Мая 2013 в 21:53, дипломная работа

Краткое описание

Екі өткізгішті бір-біріне түйістірген кезде жылулық қозғалыстың әсерінен электрондар бір өткізгіштен басқа өткізгішке өтеді. Егер түйісетін өткізгіштер әртүрлі материалды болып келсе немесе олардың әртүрлі нүктелеріндегі температуралары бірдей болмаса, онда электрондар диффузиясының екі жақты ағындары бірдей болмайды, осының нәтижесінде бір өткізгіш оң, ал екіншісі – теріс зарядталып қалады. Сондықтан өткізгіштің ішінде және өткізгіштер арасындағы сыртқы кеңістікте электр өрісі пайда болады. Тепе-теңдік күйінде өткізгіштің ішінде диффузия ағындарының айырмашылығын дәл компенсациялайтын өріс тұрақталанады. Осы электр өрістерінің болуына өткізгіш-өткізгіш, өткізгіш-жартылай өткізгіш, жартылай өткізгіш – жартылай өткізгіш түйісулерінде пайда болатын бірқатар құбылыстар негізделінген.

Содержание

Кіріспе................................................................................................................. 2
1. Қатты дененің физика элементтері .......................................................... 6
1.1. Қатты денелердің зоналық теориясы туралы түсінік ............................. 6
1.2. Зоналар теориясы бойынша металдар, жартылай
өткізгіштер және диэлектриктер .............................................................. 7
2. Әртүрлі материалдан жасалған өткізгіштердегі түйісу құбылыстары.... 10
2.1. Түйісу потенциалдар айырымы................................................................... 10
2.2. Термоэлектрлік құбылыс............................................................................. 11
2.3. Пельтье эффектісі......................................................................................... 13
2.4. Томсон эффектісі.......................................................................................... 15
2.5. Термоэлектрлік құбылыстарды пайдалану................................................ 16
3. Негізгі қасиеттері бойынша өткізгіштердің, диэлектриктердің және
жартылай өткізгіштердің бір-бірінен айырмашылықтары........................ 18
3.1. Жартылай өткізгіштердің металдардан және диэлектриктерден
айырмашылығы............................................................................................ 18
3.2. Жартылай өткізгіштердің меншікті кедергілерінің температураға
тәуелділігі .................................................................................................... 19
4. Жартылай өткізгіштердің түрлері ................................................................ 22
4.1. Өзіндік жартылай өткізгіштердің электр өткізгіштігі ............................. 22
4.2. Қоспалы жартылай өткізгіштердің өткізгіштігі ....................................... 25
4.3. р - n ауысуының қасиеттері ....................................................................... 31
5. Жартылай өткізгіштік құралдар ................................................................ 36
5.1. Жартылай өткізгіштік диод ........................................................................ 36
5.2. Транзисторлар ............................................................................................. 40
Қорытынды ......................................................................................................... 47
Пайдаланылған әдебиеттер тізімі .................................................................... 50

Прикрепленные файлы: 1 файл

Дип.-Қатты-дененің-физика-элементтері.doc

— 341.50 Кб (Скачать документ)

Зоналық теория бойынша өзіндік жартылай өткізгіштің өткізгіштігі валенттік зонаның жоғары деңгейлерінен электрондардың өткізгіштік зонаға ауысуынан пайда болады. Бұл кезде өткізгіштік зонада ток тасымалдаушылардың бірнеше саны – зонаның түбіне жақын деңгейлерде орналасқан, электрондар пайда болады; валенттік зонаның жоғары деңгейлерінде бір мезгілде осынша саны бар бос орындар пайда болады, осының нәтижесінде кемтіктер пайда болады. Керісінше рекомбинация процесіне электронның өткізгіштік зонадан валенттік зонаның бір бос деңгейіне ауысуы сәйкес келеді.

Жеткілікті жоғары температурада  өзіндік жартылай өткізгіштің өткізгіштігі барлық жартылай өткізгіштердің түрлерінде байқалады. Алайда, қоспасы бар жартылай өткізгіштерде, электр өткізгіштік өзіндік және қоспалы өткізгіштіктердің қосындысынан тұрады.

 

4. 2. Қоспалы жартылай өткізгіштердің өткізгіштігі

Егер балқытылған таза германийге немесе кремнийге Менделеев кестесіндегі үшінші топтың элементтерінің атомдарының (Іn, Al, Ga, B  және басқалар) аздаған мөлшерде қосса, мысалы  Іn,  онда қатайғаннан кейін   Іn  атомдары кристалдық тордың кейбір түйіндерінен орын алып, кристалдық құрамына енеді. In  атомдары кристалда төрт көрші Ge  атомдарымен ортақ электрондық жұп құрайды. Алайда индий Іn  атомында сыртқы электрондық қабатта үш қана электрон болғандықтан, сегіз электроннан тұратын орнықты қабат құру үшін, оған бір ортақ электрон жетіспейді. Іn  атомы жетіспейтін электронды көрші германийдің Ge  атомынан қамтып алуы мүмкін. Сонда ол теріс зарядталады да, ал қандай да бір орында жылжымалы кемтік пайда болады.

Кристалл электронейтраль  болып қала береді, бірақ ондағы теріс зарядталған  In  атомдары тормен байланысқан (локалданылған), ал оң зарядталған   кемтіктер   электр    тогына   қатысуы   мүмкін  (16-сур.).    Мұндай

 

16 - сур.

кристалдың өткізгіштігі негізінен кемтік болады, өйткені  кристалда пайда болған кемтіктердің саны, аздаған қоспаны ендіргеннің өзінде (10-4 – 10-6 %), қоспасыз жартылай өткізгіштегі  «электрон-кемтік» жұбының санынан едәуір көп болады.

Егер жартылай өткізгіште атомдары электрондарды қамтып алатын, Менделеев кестесіндегі  ІІ топтағы элементтердің қоспасы болса, онда мұндай қоспаны р-типті қоспа деп атайды («позитив» - оң деген сөз) немесе акцепторлық (аламан) қоспа, ал кристалл  р-типті жартылай өткізгіш деп аталынады.

р- типті жартылай өткізгіштерде  негізгі электр өткізгіштіктің рөлін – жылжымалы зарядтардың негізгі тасымалдаушылары – кемтіктер атқарады.

Германий торына Менделеев  кестесінің  V  тобының атомдарын ендірсе    (As, Sв, Р және басқалар), мысалы мышьякты  Аs, сыртқы қабатшадағы төрт электрон (қоспа атомының сыртқы қабатшасындағы бес электрондардың төртеуі) көрші төрт германий  Ge атомдарымен ортақ электрондық жұптар құрады, және де әрбір атомда, соның ішінде мышьяк  As  атомында да, ортақ электрондардың арқасында сыртқы электрондық қабат орнықты болатын санға жетеді (сегіз электрон). Мышьяк  As  атомының бесінші сыртқы электроны «артық» болып қалады. Ол, басқа электрондарға қарағанда ядромен нашарырақ байланысқан, және де оны аздаған энергия шығындап, атомнан бөліп бос электронға айналдыруға болады. Бұл кезде мышьяк  As  атомы оң зарядталады (иондалады).

Сонымен, германий кристалының  торына  V  топтың атомдарын ендірген кезде тордың түйіндерінде оң зарядталған «қозғалмайтын» қоспаның иондары және еркін электрондар пайда болады (17-сур.). Мұндай жартылай өткізгіштердің   өткізгіштігі   негізінен   электрондық   болады.   Бұл    жағдайда

кристалды  n-типті жартылай өткізгіш деп атайды («негатив» - теріс деген сөз), ал қоспаны n-типті қоспа немесе донорлық (беремен) деп атайды.

n- типті жартылай өткізгіштің электр өткізгіштігіне негізінен электрондар роль атқарады, өйткені онда тынымсыз  «электрон-кемтік»  жұбының жылулық

 

17 - сур.

генерациясы жүріп жатқанымен (таза жартылай өткізгіштегі сияқты),  n-қоспадағы иондалу кезіндегі алынған бос электрондардың саны (жылжымалы зарядтардың негізгі тасымалдаушылары) едәуір көп болады. Оның үстіне n-типті жартылай өткізгіште кемтіктер, таза жартылай өткізгішке қарағанда азырақ, өйткені мұнда таза жартылай өткізгішке салыстырғанда, кемтіктердің электрондармен кездесу ықтималдығы жоғары (электрондар саны өте көп) және рекомбинация жігерлі өтеді.

Жартылай өткізгіш кристалында  қоспаның атомдарын иондау үшін, жартылай өткізгіштің өзінің атомдарын иондау үшін қажет энергиядан да аз, энергия  шығыны жұмсау жеткілікті. Сондықтан, температура көтерілген кездегі қоспасы жартылай өткізгіштердің өткізгіштігінің өзгерісін бақылау көңіл аударарлық. Қоспасы жартылай өткізгіштің кристалының температурасы абсолют нольге жақын жерде диэлектрик болып келеді, өйткені мұндай жағдайда оның атомдарының электрондарының энергиясы минимал болады.

Төменгі температурада  n-типті  қоспаның атомдарына жататын электрондардың энергиясы, олар атомдардан бөлініп еркін болу үшін жеткіліксіз, ал  р-типті  қоспа атомдары электрондарды қамтып алмайды, себебі мұндай қамтып алу электрондар энергиясының артуымен қоса жүреді. «Электрон-кемтік» жұбының пайда болу үшін мұнан да үлкен энергия керек болғандықтан, мұндай жұптардың генерациясы тіптен жүрмейді, яғни жартылай өткізгіштердің өзіндік өткізгіштігі нольге тең.

Температураны біртіндеп  көтерген кезде, n-типті қоспаның атомдарынан бөлінуге мүмкін болатын немесе  р-типті қоспаның атомдары қамтып алатын жеке электрондар пайда болады, яғни температура артқан сайын, қоспаның барлық атомдары иондалып біткенше, тез өсетін электр өткізгіштік пайда болады. Басқаша айтқанда, жылжымалы зарядты тасымалдаушылар концентрациясы қоспаның атомдарының концентрациясына тең болғанша, бұл практика жүзінде  00 С-де  алынады. Мұндай жағдайларда «электрон-кемтік» жұптары аздаған мөлшерде пайда болғанымен, олар өткізгіштікке мәнді әсер ете алмайды.

Сондықтан, қоспасы жартылай өткізгіштерді қыздырған кезде, металдардағы сияқты, жылжымалы зарядты  тасымалдаушылар концентрациясы орташа температура интервалында, өзгермей қалады деп санауға болады. Бұл кезде қоспасы жартылай өткізгіштердің өткізгіштігі, металдардың өткізгіштігі сияқты, нашарлайды, өйткені өрістің әсерінен еркін зарядты тасымалдаушылардың реттелген ағынының, тордың жылулық тербелістерінің әсерінен шашырауының күшеюі есебінен, қозғалғыштығы азаяды.

Алайда жеткілікті жоғары температурада жартылай өткізгіштің  өзіндік өткізгіштігі, «электрон-кемтік»  жұптарының  өте көп санының  генерациялануы салдарынан сондай артып, енді оны қыздырған кезде еркін  зарядты тасымалдаушылар концентрациясы тұрақты қалады деп санауға болмайды. Демек, қоспасы жартылай өткізгіштердің өткізгіштігі кенет өседі. Көп жағдайда қоспасы жартылай өткізгіштердің кедергісінің төмендеуі, қыздыру кезінде 100 – 2000 С-де  басталады.

Жартылай өткізгіштің  кристалына бір мезгілде акцепторлық және донорлық қоспа ендірсе, егер акцепторлық қоспа артық болса, онда кристалл  р-типті, ал донорлық қоспа артық болса  n-типті болып шығады. Мынадай жағдайда да болуы мүмкін,  р-типті және  n-типті қоспалар бірін-бір теңгеретіндей шамада ендірілген. Сонда,  n-типті  қоспаның атомдары иондалу кезінде пайда болған бос электрондар,  р-типті қоспаның атомдары қамтып алып, «қозғалмайтын»  n-типті атомның оң заряды, және  р-типті атомның теріс заряды алынады, ал кристалдағы еркін зарядты тасымалдаушылар, қоспасыз жартылай өткізгіштегімен бірдей болады. Бұл құбылысты компенсация деп атайды. Мұндай жартылай өткізгіштің өткізгіштігі, қоспасыздығыдай аз болады.

n-типті  жартылай өткізгіштердің өткізгіштігінің электрондық сипаты және  р-типті жартылай өткізгіштердің өткізгіштігінің кемтіктік сипаты эксперимент жүзінде Холл эффектісін зерттегенде дәлелденеді. Холл эффектісі деп, ток жүріп тұрған жалпақ металл өткізгішті, пластинаға перпендикуляр магнит өрісін орналастырған кезде, оның ені бойынша екі шетінде потенциалдар айырымының пайда болу құбылысын айтады.  n-типті  жартылай өткізгіштегі  бақыланатын холл потенциалдар айырымының таңбасы теріс ток тасымалдаушыларға, ал  р-типті жартылай өткізгіштерде – оң тасымалдаушыларға сәйкес келеді.

Қоспалар тордың өрісін айнытады, кристалдың тыйым салынған зонасында орналасқан, қоспалық деңгейлердің энергетикалық сұлбасының пайда болуына алып келеді. Бұл қоспалық деңгейлер n-типті жартылай өткізгіштер жағдайында донорлық (18-сур.,а), ал  р-типті жартылай өткізгіш жағдайында акцепторлық деп аталады (18-сур.,б).  

            

18 - сур.

n – типті жартылай өткізгіштерде Ферми деңгейі тыйым салынған зонаның жоғарғы жартысына орналасса, ал p – типті жартылай өткізгіште – тыйым салынған зонаның төменгі жартысында орналасады. Температура артқан кезде жартылай өткізгіштердің екі түріндеде Ферми деңгейі тыйым салынған зонаның ортасына ығысады.

Егер донорлық деңгейлер  валенттік зонаның төбесінен  алыс орналаспаса, олар кристалдың электрлік  қасиетіне мәнді әсер ете алмайды. Мұндай деңгейлердің өткізгіштік зонаның түбінен қашықтығы, тыйым салынған зонаның енінен едәуір аз болған жағдайда басқаша болады. Бұл жағдайда қалыпты температураның өзінде жылулық қозғалыс энергиясы, донорлық деңгейден өткізгіштік зонаға ауыстыру үшін жеткілікті болады (18-сур.а). Бұл процеске қоспа атомынан бесінші валенттік электронды бөліп алу сәйкес келеді. Қоспа атомының бос электронды қамтып алуына 18 – суретте, аз электронның өткізгіштік зонадан бір донорлық деңгейге көшуі сәйкес келеді.

Акцепторлық деңгейлер  кристалдың электрлік қасиетіне, егер олар валенттік зонаның төбесіне жақын орналасса мәнді әсер етеді (18-сур.,б). Кемтіктің пайда болуына электронның валенттілік зонадан акцепторлық деңгейге ауысуы сәйкес келеді. Кері процесс қоспа атомының төрт коваленттік оның көршілерімен байланысының үзілуіне және бұл кезде пайда болған электрон мен кемтіктің рекомбинациясына сәйкес келеді.

Температура жоғарылаған  кезде токтың қоспалы тасымалдаушыларының  концентрациясы тез өзінің қанығуына жетеді. Бұл, іс жүзінде барлық донорлық электрондар босап шығатынын немесе барлық акцепторлық деңгейлер электрондармен толатынын көрсетеді. Мұнымен бірге температура өскен сайын, тікелей валенттік зонадан өткізгіштік зонаға электрондардың көшуімен байланысты, жартылай өткізгіштің өзіндік өткізгіштігі басым бола бастайды. Сонымен, жоғары температурада жартылай өткізгіштің өткізгіштігі коспалық және өзіндік өткізгіштіктен тұрады. Төменгі температурада - өзіндік өткізгіштік басым болады.

 

 

4.3. р - n  ауысуының қасиеттері

Екі бөліктен тұратын  жартылай өткізгіштің кристалын  алайық:  оның біреуі  р-типті қоспалы және екіншісі  n-типті  қоспалы болсын. Бұл екеуінің шекарасы  р-n  ауысуы деп аталынады.

Айталық, жартылай өткізгіштің  бұл екі бөлігі енді ғана түйістірілсін (шын мәнінде бұл бір кристалдың екі бөлігі, оның біреуінде р-типті қоспа басым болады). Сонда бірден электрондары көп n-типті жартылай өткізгіштен электрондар, олардың саны аз  р-типті жартылай өткізгішке ауысады, ал кемтіктер кері бағытқа қарай орын ауыстырады. Бұл электрондар мен кемтіктердің диффузиясы екі сұйықтармен немесе газдармен өзара диффузиясына ұқсас, бірақ бұл процестерден айырмашылығы, электрондар мен кемтіктердің диффузиясы өте жылдам өтеді.

Кемтіктер мен электрондар зарядтарды тасымалдамайтын болса, олардың диффузиясы кемтіктер мен электрондардың концентрациясы толығымен теңескенге дейін жүрер еді. Алайда,  n - аймақтан  р - аймаққа көшкен электрондар теріс заряд алып өтеді, сонда n - аймақ оң зарядталады, ал  р – аймақ теріс зарядталады. Қарама-қарсы бағыттағы кемтіктердің диффузиясы да  р – аймақты теріс зарядтайды, ал  n – аймақты оң зарядтайды, яғни  р -  және  n – аймақтары арасында  түйісу потенциалдар айырымы пайда болады.

Пайда болған электр өрісі  кері ауысуға алып келеді: кемтіктерді  n – аймақтан  р-аймаққа  және электрондарды  р-аймақтан  n- аймаққа (19-сур.,а).

19 – сур.

Шын мәнінде,  р-аймақта  тұрған еркін электрон хаосты қозғалыс кезінде ауысу қабатының  А  шекарасынан өтетін болса, онда өріс күштері  n-аймаққа тартып алып кетеді. n – аймақта тұрған кемтіктер де сондай күйге ұшырайды. Ал  р-аймақта тұрған кемтіктер  АБ  ауысу қабатына енетін болса, егер олардың кинетикалық энергиясы жеткіліксіз жағдайда өрістің әсерінен кері  р-аймаққа тебіледі, сөйтіп олардың диффузиясын азайтады. АБ қабатынан  n-аймаққа, тек жеткілікті кинетикалық энергиясы бар кемтіктер ғана өте асады (19-сур.,б). Бұл айтылғандар n-аймақтағы электрондарға да қатысты.

Сондықтан  АБ  ауысу  қабатында,  р-аймақтан  n-аймаққа келетін кемтіктердің диффузиялық ағыны,  АБ  аймағындағы өрістің жасаған кемтіктердің қарсы ағынымен теңгеріледі (19-сур.,в). Бір мезгілде электрондардың да қарсы ағындары теңгеріледі.

19 – суретте көрсетілген процестерді айқынырақ түсіндірейік: а) р – және  n – аймақтарының арасында жылжымалы тасымалдаушылар саны тіптен азайған,  АБ  қабаты пайда болды, онда барлық электр өріс шоғырланған;  АО  аймағында р-типті қоспаның иондары топталып тұр, ал  БО  аймағында  n-типті қоспаның иондары топталып тұр;  б) ауысу арқылы негізгі тасымалдаушылардың диффузиялық ағынының пайда болуының көрсетілуі, мұнда 1 - өрістің қарсы әсерін жеңе алмайтын электрондар мен кемтіктер, ал 2 - өрістің қарсы әсерін жеңуге жеткілікті энергиясы бар электрондар мен кемтіктер;  в) АБ аймағындағы өрістің әсерінен ауысу арқылы негізгі емес тасымалдаушылардың ағынының пайда болуының көрсетілуі.

Қалыңдығы өте аз (бірнеше  микроннан артық емес) АБ ауысу  аймағында, жылжымалы зарядты тасымалдаушылар  ұсталып тұра алмайды, сондықтан  онда тек АО аймағында акцепторлық қоспаның иондары, ал  БО аймағында донорлық қоспаның иондары шоғырланып қалады. Барлық электр өрісі  А  және  Б  беттерінің арасында жинақталады да зарядтарға конденсатордың өрісі секілді әсер етеді. Конденсатордан айырмашылығы, мұнда өрісті жасайтын зарядтар бет бойынша орналаспайды, олар А  және  Б  аралығындағы барлық көлем бойынша орналасады.

Информация о работе Қатты дененің физика элементтері