Автор работы: Пользователь скрыл имя, 24 Марта 2014 в 14:03, дипломная работа
Энергетика - важнейшая часть жизнедеятельности человека. Она является основой развития производительных сил в любом государстве, обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств, она рассматривается как часть единой народно- хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. В то же время технический прогресс сопровождается загрязнением окружающей среды. В связи с этим вопрос об экологически чистых источниках энергии становится все более актуальным. Новые пути развития энергетики направлены на поиск и развитие таких источников энергии.
Введение……………………………………………………………………………..3
Глава I. Альтернативные источники энергии
Основные виды альтернативных источников энергии………………….6
Геотермальная энергия……………….…………………………………..…6
Энергия Солнца……………………….………………………………….…8
Энергия ветра…………………………….………………………………...10
Энергия волн………………………….….……………………………...…12
Гидроэнергия…………………………………………………………….…12
Гидротермальная энергия.…………….……………………………….…..13
Водородная энергетика………………………………………………….…14
Управляемый термоядерный синтез……………………………………...15
Энергия приливов и отливов……………………………………………...16
Биоэнергетика…………………………………………...……………….…17
Глава II. Психолого-педагогические особенности изучения
альтернативных источников энергии в профильном обучении физике
2.1. Некоторые проблемы преподавания альтернативных источников энергии в профильном обучении физике……………………………………………….…………….18
2.2. Психолого-методические особенности изучения темы «Альтернативные источники энергии»………………………………………………………………………..20
2.3. Основные методы использования дидактических исследований в обучении физики в школе……………………………………………………..………………….……22
Глава Ш. Методические аспекты изучения альтернативных
источников энергии в профильном обучении физике
3.1. Особенности изучения альтернативных источников энергии в школьном
курсе физики …………………….…………………..…………………..…….......29
3.2. Демонстрационные опыты при наблюдении альтернативных источников энергии………………………………………………………..……….................................33
3.3. Элективный курс по физике «Альтернативная энергетика»……………....39
Заключение…………………………………………………...………………........47
Список использованной литературы………………………………..…………50
Приложение 1. Поурочное планирование………………………………………..51
Разумеется, обычный холодильник здесь непригоден. Но для той же цели серийно выпускаются схожие по сути устройства, которые тем эффективнее, чем меньше перепад температур между обогреваемым помещением и грунтом или другим источником тепла (водоемом, сточными водами, сбросами теплой воды или воздуха промышленных предприятий). Тепловые насосы - одна из перспективных энергосберегающих технологий, которая выгодна при наличии подходящих источников тепла, а также в районах, где обычное теплоснабжение затруднено или имеется избыток электроэнергии.
Электростанции такого типа преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электричество. Первая геотермальная электростанция была построена на Камчатке. Существует несколько схем получения электроэнергии на геотермальной электростанции. Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.
1.1.2. Энергия солнца
Ведущим экологически чистым источником энергии является Солнце. В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве
Почти все источники энергии используют энергию Солнца: уголь, нефть, природный газ. Под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год дает человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле.
Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.
Простейшее устройство такого рода – плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (на 200–500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.
Более сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной геометрической точки – фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу – это позволяет собирать, возможно, большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000 °С и выше.
По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.
Эффективность солнечных электростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно слабой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.
Тем не менее, солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле – в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и зажигалки и т.п.).
В настоящее время строятся солнечные электростанции в основном двух типов: солнечные электростанции башенного типа и солнечные электростанции распределенного (модульного) типа.
В башенных солнечных электростанциях используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550º С, воздух и другие газы — до 1000º С, низкокипящие органические жидкости (в том числе фреоны) — до 100ºС, жидкометаллические теплоносители — до 800º С.
1.1.3. Энергия ветра
Ветряная энергия является наиболее используемой, среди возобновляемых источников. Ветер в приземном слое образуется вследствие неравномерного нагрева земной поверхности Солнцем. Поскольку поверхность Земли неоднородна, то даже на одной и той же широте суша и водные пространства, горы и лесные массивы, пустыни и болотистые низины нагреваются по-разному. В течение дня над морями и океанами воздух остается сравнительно холодным, поскольку значительная часть энергии солнечного излучения расходуется на испарение воды или поглощается ею. Над сушей воздух прогревается больше, расширяется, снижает свою массовую плотность и устремляется в более высокие слои над землей. Его замещают более холодные, а следовательно, более плотные воздушные массы, располагавшиеся над водными пространствами, что и приводит к возникновению ветра как направленному перемещению больших масс воздуха. Эти местные ветры, образующиеся в прибрежных зонах, носят название бризов. Годовые изменения температуры в береговых районах больших морей и океанов вызывают циркуляцию более крупного масштаба, чем бризы, называемые муссонами. Они делятся на морские и материковые, отличаются, как правило, большими скоростями и в течение ночи меняют свое направление. Аналогичные процессы происходят в гористых местах и долинах вследствие разных уровней нагрева экваториальных зон и полюсов Земли и многих других факторов. Характер циркуляции земной атмосферы усложняется вследствие сил инерции, возникающих при вращении Земли. Они вызывают различные отклонения воздушных течений, образуется множество циркуляции, в большей или меньшей мере взаимодействующих между собой.
Возникновение ветра происходит благодаря неравномерному распределению атмосферного давления. Из-за того, что атмосферное давление постоянно меняется, меняется и направление, и скорость ветра. С давних времен человек научился использовать энергию ветра и применять её в разных областях. Например, ветряные мельницы крутили жернова и перемалывали зерно в муку, корабли перемещались благодаря парусу и ветру. Ветер имеем огромную мощь и потенциал, который способен производить огромное количество полезной энергии для человека.
Сила и направление ветра в различных зонах по-разному изменяются в зависимости от высоты над поверхностью Земли. Так, на экваторе близко к земной поверхности расположена зона с относительно небольшими и переменными по направлению скоростями ветра, а в верхних слоях возникают достаточно большие по скорости воздушные потоки в восточном направлении. На высоте от 1 до 4 км от поверхности Земли, в зоне между 30° северной и южной широт образуются достаточно равномерные воздушные течения, называемые пассатами. В северном полушарии ближе к поверхности Земли их средняя скорость составляет 7 — 9 м/с.
Вокруг зоны пониженного давления образуются крупномасштабные циркуляции воздушных масс — в северном полушарии против направления движения часовой стрелки, а в южном — по направлению ее движения. Вследствие наклона 23,5° оси движения Земли к плоскости ее вращения относительно Солнца происходят сезонные изменения тепловой энергии, получаемой от него, величина которых зависит от силы и направления ветра над определенной зоной земной поверхности.
Таким образом, тепловая энергия, непрерывно поступающая от Солнца, преобразуется в кинетическую энергию движения в атмосфере огромных масс воздуха, циркуляция которых и называется ветром.
Энергия движущихся воздушных масс огромна. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Принцип работы ветроустановок очень прост: лопасти, которые вращаются за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается в электрический ток. Для переработки ветра в энергию устанавливают ветровые электростанции, которые имеют следующие преимущества и недостатки
Преимущества
Недостатки
1.1.4. Энергия волн
Энергия волн – энергия, переносимая волнами на поверхности океана. Может использоваться для совершения полезной работы – генерации электроэнергии, опреснения воды. Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).
Идея получения электроэнергии от морских волн была изложена еще в 1935 г. советским ученым К.Э. Циолковским.
В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую. Когда буй качается по волне, уровень воды внутри него меняется. От этого воздух то выходит из него, то входит. Но движение воздуха возможно только лишь через верхнее отверстие (такова конструкция буя). А там установлена турбина, вращающаяся всегда в одном направлении независимо от того в каком направлении движется воздух. Даже довольно небольшие волны высотой 35 см заставляют турбину развивать более 2000 оборотов в минуту. Другой тип установки – что-то вроде стационарной микроэлектростанции. Внешне она похожа на ящик, установленный на опорах на небольшой глубине. Волны проникают в ящик и приводят в действие турбину. И здесь для работы достаточно совсем небольшого волнения моря. Даже волны высотой в 20 см зажигали лампочки общей мощностью 200 Вт. Волновая энергия представляет собой сконцентрированную энергию ветра и, в конечном итоге, солнечной энергии. Мощность, полученная от волнения всех океанов планеты, не может быть больше мощности, получаемой от Солнца. Но удельная мощность электрогенераторов, работающих от волн, может быть гораздо большей, чем для других альтернативных источников энергии.
Представляет интерес и использование энергии волн для движения судов. Удельная мощность волнения превышает удельную мощность ветра, т.е. размеры волнового привода могут быть существенно меньше, чем парусное оснащение. Качка судна, как правило, превышает по своей мощности мощность необходимой силовой установки. Волнение на море бывает даже в штиль. Волнение - это колебательный процесс. В отличие от ветра, который может дуть и против движения судна, волнение можно использовать при любом направлении движения фронта волн относительно судна. При шторме волновой привод может обеспечить судну достаточно энергии для борьбы со стихией.
Энергия морских волн значительно выше энергии приливов и отливов. Приливное рассеяние (трение, вызванное Луной) составляет порядка 2.5 ТВт. Энергия волн значительно выше и может быть использована значительно шире, чем приливная.
Наиболее мощные течения океана – потенциальный источник энергии.
1.1.5. Гидроэнергия
Гидроэнергостанции – еще один из источников энергии, претендующих на экологическую чистоту. В начале XX века крупные и горные реки мира привлекли к себе внимание, а концу столетия большинство из них было перегорожено каскадами плотин, дающими баснословно дешевую энергию. Однако это привело к огромному ущербу для сельского хозяйства и природы вообще: земли выше плотин подтоплялись, ниже – падал уровень грунтовых вод, терялись огромные пространства земли, уходившие на дно гигантских водохранилищ, прерывалось естественное течение рек, загнивала вода в водохранилищах, падали рыбные запасы и т.п. На горных реках все эти минусы сводились к минимуму, зато добавлялся еще один: в случае землетрясения, способного разрушить плотину, катастрофа могла привести к тысячам человеческих жертв. Поэтому современные крупные ГЭС не являются действительно экологически чистыми. Минусы ГЭС породили идею “мини-ГЭС”, которые могут располагаться на небольших реках или даже ручьях, их электрогенераторы будут работать при небольших перепадах воды или движимые лишь силой течения. Эти же мини-ГЭС могут быть установлены и на крупных реках с относительно быстрым течением.
Детально разработаны центробежные и пропеллерные энергоблоки рукавных переносных гидроэлектростанций мощностью от 0.18 до 30 киловатт. При поточном производстве унифицированного гидротурбинного оборудования “мини-ГЭС” способны конкурировать с “макси” по себестоимости киловатт-часа. Несомненным плюсом является также возможность их установки даже в самых труднодоступных уголках страны: все оборудование можно перевезти на одной вьючной лошади, а установка или демонтаж занимает всего несколько часов.
Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная геликоидная турбина Горлова (по имени ее создателя). Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока - реки, океанского течения или морского прилива. Это изобретение изменило привычное представление о гидроэнергостанции, мощность, которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.
Гидроэлектростанции преобразуют энергию потока воды в электроэнергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Наибольший КПД гидроэлектростанция имеет тогда, когда поток воды падает на турбину сверху. Для этих целей строится плотина, поднимающая уровень воды в реке и сосредотачивающая напор воды в месте расположения турбин