Автор работы: Пользователь скрыл имя, 19 Декабря 2010 в 14:58, реферат
В данном реферате рассматривается одно из самых популярных практических приложений нейросетей - предсказание рыночных временных рядов. В этой области предсказания наиболее тесно связаны с доходностью, и могут рассматриваться как один из видов бизнеса.
где - доля капитала, "в игре". Выигрыш за все время игры:
нам и предстоит максимизировать, выбрав оптимальный размер ставок . Пусть в среднем игрок угадывает долю знаков и, соответственно, ошибается с вероятностью . Тогда логарифм нормы прибыли,
,
а следовательно и сама прибыль, будет максимальным при значении и составит в среднем:
.
Здесь мы ввели коэффициент . Например, для Гауссова распределения . Степень предсказуемости знака напрямую связана с кросс-энтропией, которую можно оценить a priory методом box-counting. Для бинарного выхода (см. Рисунок 10):
Рисунок 10.
В итоге получаем следующую оценку нормы прибыли при заданной величине предсказуемости знака , выраженной в битах:
.
То есть, для ряда с предсказуемостью в принципе возможно удвоить капитал за вхождений в рынок. Так, например, измеренная выше предсказуемость временного ряда S&P500, равная (см. Рисунок 8) предполагает удвоение капитала в среднем за вхождений в рынок. Таким образом, даже небольшая предсказуемость знака изменения котировок способна обеспечить весьма заметную норму прибыли.
Подчеркнем, что оптимальная норма прибыли требует достаточно аккуратной игры, когда при каждом вхождении в рынок игрок рискует строго определенной долей капитала:
,
где - типичная при данной волатильности рынка величина выигрыша или проигрыша. Как меньшие, так и большие значения ставок уменьшают прибыль. Причем, чересчур рискованная игра может привести к проигрышу при любой предсказательной способности. Этот факт иллюстрирует Рисунок 11.
Рисунок 11.
Поэтому приведенные выше оценки дают представление лишь о верхнем пределе нормы прибыли. Более тщательный анализ с учетом влияния флуктуаций, выходит за рамки нашего изложения. Качественно понятно, однако, что выбор оптимального размера контрактов требует оценки точности предсказаний на каждом шаге.
4.2 Выбор функционала ошибки
Если
принять, что целью предсказаний
финансовых временных рядов является
максимизация прибыли, логично настраивать
нейросеть именно на этот конечный
результат. Например, при игре по описанной
выше схеме для обучения нейросети
можно выбрать следующую
.
Здесь доля капитала в игре введена в качестве дополнительного выхода сети, настраиваемого в процессе обучения. При таком подходе, первый нейрон, , с функцией активации даст вероятность возрастания или убывания курса, в то время как второй выход сети даст рекомендованную долю капитала в игре на данном шаге.
Поскольку, однако, в соответствии с предыдущим анализом, эта доля должна быть пропорциональна степени уверености предсказания, можно заменить два выхода сети - одним, положив , и ограничиться оптимизацией всего одного глобального параметра минимизирующего ошибку:
Тем самым, появляется возможность регулировать ставку в соответствии с уровнем риска, предсказываемым сетью. Игра с переменными ставками приносит большую прибыль, чем игра с фиксированными ставками. Действительно, если зафиксировать ставку, определив ее по средней предсказуемости, то скорость роста капитала будет пропорциональна , тогда как если определять оптимальную ставку на каждом шаге, то - пропорциональна .
Из-за случайности в выборе начальных значений синаптических весов, предсказания сетей, обученных на одной и той же выборке, будут, вообще говоря, разниться. Этот недостаток (элемент неопределенности) можно превратить в достоинство, организовав комитет нейро-экспертов, состоящий из различных нейросетей. Разброс в предсказаниях экспертов даст представление о степени уверенности этих предсказаний, что можно использовать для правильного выбора стратегии игры.
Легко показать, что среднее значений комитета должно давать лучшие предсказания, чем средний эксперт из этого же комитета. Пусть ошибка -ого эксперта для значения входа равна . Средняя ошибка комитета всегда меньше среднеквадратичной ошибки отдельных экспертов в силу неравенства Коши:
Причем, снижение ошибки может быть довольно заметным. Так, если ошибки отдельных экспертов не коррелируют друг с другом, т.е. , то среднеквадратичная ошибка комитета из экспертов в раз меньше, чем среняя индивидуальная ошибка одного эксперта!
Поэтому, в предсказаниях всегда лучше опираться на средние значения всего комитета. Иллюстрацией этого факта служит Рисунок 12.
Рисунок 12.
Как видно из приведенного выше рисунка, в данном случае выигрыш комитета даже выше, чем выигрыш каждого из экспертов. Таким образом, метод комитетов может существенно повысить качество прогнозирования. Обратите внимание на абсолютное значение нормы прибыли: капитал комитета возрос в 3.25 раза при 100 вхождениях в рынок (Естественно, эта норма будет ниже при учете транзакционных издержек).
Предсказания получены при обучении сети на 30 последовательных экспоненциальных скользящих средних (EMA1 … EMA30) ряда приращений индекса. Предсказывался знак приращения на следующем шаге.
В этом эксперименте ставка была зафиксирована на уровне , близком к оптимальному при данной точности предсказаний (59 угаданных знаков против 41 ошибки) т.е. . На следующем же рисунке приведены результаты более рискованной игры по тем же предсказаниям, а именно - с .
Рисунок 13.
Выигрыш комитета в целом остался на прежнем уровне (чуть увеличился), поскольку данное значение риска так же близко к оптимуму, как и предыдущее. Однако, для большинства сетей, предсказания которых хуже, чем у комитета в целом, такие ставки оказались слишком рискованными, что привело к практически полному их разорению.
Приведенные
выше примеры показывают как важно
уметь правильно оценить
Можно пойти еще дальше и вместо среднего использовать взвешенное мнение сетей-экспертов. Веса выбираются адаптивно максимизируя предсказательную способность комитета на обучающей выборке. В итоге, хуже обученные сети из комитета вносят меньший вклад и не портят предсказания.
Возможности этого пути иллюстрирует приведенное ниже сравнение предсказаний двух типов комитетов из 25 экспертов (см. Рисунок 14 и Рисунок 15). Предсказания проводились по одной и той же схеме: в качестве входов использовались экспоненциальные скользящие средние приращений ряда с периодами равными первым 10 числам Фибоначчи. По результатам 100 экспериментов взвешенное предсказание дает в среднем превышение правильно угаданных знаков над ошибочным равное примерно 15, тогда как среднее - около 12. Заметим, что общее число повышений курса над понижением за указанный период как раз равно 12. Следовательно, учет общей тенденции к повышению в виде тривиального постоянного предсказания знака "+" дает такой же результат для процента угаданных знаков, что и взвешенное мнение 25 экспертов.
Рисунок 14. | Рисунок 15. |
До сих пор результаты численных экспериментов формулировались нами в виде процента угаданных знаков. Зададимся теперь вопросом о реально достижимой норме прибыли при игре с помощью нейросетей. Полученные выше без учета влияния флуктуаций верхние границы нормы прибыли вряд ли достижимы на практике, тем более, что до сих пор мы не учитывали транзакционных издержек, которые могут свести на нет достигнутую степень предсказуемости.
Действительно, учет комиссионных приводит к появлению отрицательного члена в показателе экспоненты:
.
Причем, в отличае от степени предсказуемости , комиссия входит не квадратично, а линейно. Так, в приведенном выше примере типичные значения предсказуемости не смогут "пересилить" комиссию свыше .
Чтобы дать читателю представление о реальных возможностях нейросей в этой области, приведем результаты автоматического неросетевого трейдинга на трех финансовых инструментах, с различными характерными временами: значения индекса S$P500 с месячными интервалами между отсчетами, дневные котировки немецкой марки DM/$ и часовые отсчеты фьючерсов на акции Лукойл на Российской бирже. Статистика предсказаний набиралась на 50 различных нейросистемах (содержащих комитеты из 50 нейросетей каждая). Сами ряды и результаты по предсказанию знаков на тестовой выборке из 100 последних значений каждого ряда приведены на следующем рисунке.
Рисунок 16.
Эти результаты подтверждают интуитивно понятную закономерность: ряды тем более предсказуемы, чем меньше времени проходит между его отсчетами. Действительно, чем больше временной масштаб между последовательными значениями ряда, тем больше внешней по отношению к его динамике информации доступно участникам рынка, и, соответственно меньше информации о будущем содержится в самом ряде.
Далее полученные выше предсказания использовались для игры на тестовой выборке. При этом, размер контракта на каждом шаге выбирался пропорциональным степени уверенности предсказания, а значение глобального параметра оптимизировалось по обучающей выборке. Кроме того, в зависимости от своих успехов, каждая сеть в комитете имела свой плавающий рейтинг, и в предсказаниях на каждом шаге использовалась лишь "лучшая" в данный момент половина сетей. Результаты таких нейро-трейдеров показаны на следующем рисунке (Рисунок 17).
Рисунок 17
Итоговый выигрыш (как и сама стратегия игры), естественно, зависит от величины комиссионных. Эта зависимость и изображена приведенных выше графиках. Там, где реалистичные значения комиссионных в выбранных единицах измерений были известны авторам, они отмечены на рисунке. Уточним, что в этих экспериментах не учитывалась "квантованность" реальной игры, т.е. то, что величина сделок должна равняться целому числу типовых контрактов. Этот случай соответствует игре на большом капитале, когда типичные сделки содержат много контрактов. Кроме того, подразумевалась залоговая форма игры, т.е. норма прибыли исчислялась к залоговому капиталу, гораздо меньшему, чем масштабы самих контрактов.
Приведенные выше результаты свидетельствуют о перспективности нейросетевого трейдинга, по крайней мере на "коротких" временных масштабах. Более того, в силу самоподобия финансовых временных рядов (Peters, 1994), норма прибыли за единицу времени будет тем выше, чем меньше характерное время трейдинга. Таким образом, автоматические нейросетевые трейдеры оказываются наиболее эффективны при торговле в реальном времени, где как раз наиболее заметны их преимущества над обычными брокерами: неутомляемость, неподверженность эмоциям, потенциально гораздо более высокая скорость реагирования. Обученная нейросеть, подсоединенная к электронной системе торгов, может принимать решения еще до того, как брокер-человек успеет распознать изменения графика котировок на своем терминале.