Свойства пространства и времени

Автор работы: Пользователь скрыл имя, 08 Ноября 2014 в 15:46, реферат

Краткое описание

В соответствии с современным процессом "гуманизации" биологии возрастает ее роль в формировании научной картины мира. Обнаруживаются две "горячие точки" в ее развитии... Это - стык биологии и наук о неживой природе, и стык биологии и общественных наук...
Представляется, что с решением вопроса о соотношении социального и биологического научная картина мира отразит мир в виде целостной системы знаний о неживой природе, живой природе и мире социальных отношений.

Прикрепленные файлы: 1 файл

Fizicheskaya_kartina_mira.doc

— 127.50 Кб (Скачать документ)

 

 Все эти  операции обычно проводят повторно  в виде нескольких циклов, постепенно  приближаясь к оптимальным решениям. После каждого цикла уточняют критерии и другие параметры модели. До настоящего времени методы системного анализа позволяли делать качественные, часто не совсем конкретные выводы. После уточнения методов определения потоков информации эти методы позволяют значительно точнее прогнозировать поведение систем и более эффективно управлять ими. В каждой системе можно выделить отдельную, более или менее сложную инфосхему. Последняя оказывает особенно заметное влияние на функционирование системы, на эффективность её работы. Только учёт инфоструктур даёт возможность охватить целостность системы и избегать применение недостаточно адекватных математических моделей. Наибольшие ошибки при принятии решений делают из-за отсутствия учёта некоторых существенных факторов, особенно учёта влияния инфопотоков. Выяснение вопроса взаимного влияния систем представляет сложную задачу, так как они образуют тесно переплетённую сеть в многомерном пространстве. Например, любая фирма представляет собою сосредоточение элементов многих других систем и иерархии: отраслевые министерства, территориальные органы власти,  страховые организации, и др. Каждый элемент в системе участвует во многих системных иерархиях. Поэтому прогноз их деятельности сложен и требует тщательного информационного обеспечения. Такое же многоиерархическое строение имеют, например, клетки любого живого организма

Специфика современных картин мира может породить впечатление, что они возникают только после того, как сформирована теория, и поэтому современный теоретический поиск идет без их целенаправляющего воздействия.

Однако такого рода представления возникают в результате весьма беглого рассмотрения современных и следовательских ситуаций. Более глубокий анализ обнаруживает, что и в современном исследовании процесс выдвижения математических гипотез может быть целенаправлен онтологическими принципами картины мира.

 

5. Теория самоорганизации (синергетика).

 

От моделирования простых к моделированию сложных систем.

Классическое и неклассическое естествознание объединяет одна общая черта: предмет познания у них - это простые (замкнутые, изолированные, обратимые во времени) системы. Но, в сущности, такое понимание предмета познания является сильной абстракцией. Вселенная представляет из себя множество систем. И лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как “механизмы”. Во Вселенной таких “закрытых” систем меньшинство. Подавляющее большинство реальных систем открытые. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой. К такого рода системам относятся и такие системы, которые больше всего интересуют человека, значимы для него - биологические и социальные системы.

Человек всегда стремился постичь природу сложного. Как ориентироваться в сложном и нестабильном мире? Какова природа сложного и каковы законы его функционирования и развития? В какой степени предсказуемо поведение сложных систем?

В 70-е годы ХХ века начала активно развиваться теория сложных самоорганизующихся систем, получившая название синергетики. Результаты исследований в области нелинейного (порядка выше второго) математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании - синергетики. Как и кибернетика (наука управления ) , синергетика - это некоторый междисциплинарный подход. Но в отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения.

Мир нелинейных самоорганизующихся систем гораздо богаче мира закрытых, линейных систем. Вместе с тем, “нелинейный мир” и сложнее поддается моделированию. Большинство возникающих нелинейных уравнений не может быть решено аналитически. Как правило, для их (приближенного) решения требуется сочетание современных аналитических методов с большими сериями расчетов на ЭВМ, с вычислительными экспериментами. Синергетика открывает для исследования - необычные для классического и неклассического естествознания - стороны мира: его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, делает возможным моделирование катастрофических ситуаций и др.

Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем в физике и гидродинамике, в химии и биологии, в астрофизике и в обществе: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных процессов в химии (так, например реакция самоструктурирования химических соединений Белоусова - Жаботинского) до эволюции звезд и космологических процессов, от электронных приборов до формирования общественного мнения и демографических процессов.

 

6. Характеристики самоорганизующихся  систем.

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Что такое самоорганизующиеся системы? Один из основоположников синергетики Г. Хакен следующим образом определяет понятие самоорганизующейся системы: “Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки. Таким образом, современное естествознание ищет пути для теоретического моделирования самых сложных систем, которые присущи природе - систем, способных к самоорганизации, саморазвитию.

Основные свойства самоорганизующихся систем - открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми, нелинейными диссипативными системами, далекими от равновесия.

 

6.1 Открытость.

Классическая термодинамика имела дело с закрытыми системами, т.е. такими системами, которые не обмениваются со средой веществом, энергией и информацией. Напомним, что центральным понятием термодинамики является понятие энтропии. Это понятие относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой Т. Изменение энтропии определяется формулой:

d E = d Q / T ,

где d Q - количество тепла, обратимо подведенное к системе или отведенное от нее.

 

Именно по отношению к закрытым системам и были сформулированы два начала термодинамики. В соответствии с первым началом термодинамики, в закрытой системе энергия сохраняется, хотя и может приобретать различные формы.

Второе начало термодинамики гласит, что в замкнутой системе энтропия никогда не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Иначе говоря, согласно второму началу термодинамики запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к тепловой смерти. Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.

Вместе с тем, уже во второй половине ХIХ века, и особенно в ХХ веке, биология - и, прежде всего, теория эволюции Дарвина - убедительно показали, что эволюция Вселенной не приводит к понижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее в противоположном направлении - от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, со временем, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. И только в конце ХХ века, с переходом естествознания к изучению открытых систем появилась возможность такого согласования. Что такое открытые системы?

Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, которые неизбежно стремятся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы - это системы необратимые; в них важным оказывается фактор времени.

В открытых системах ключевую роль - наряду с закономерным и необходимым - могут играть случайные факторы- флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая прежде организация не выдерживает и разрушается.

 

6.2 Нелинейность.

Но если большинство систем Вселенной носят открытый характер, то это значит, что во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Неравновесность, в свою очередь, порождает избирательность системы, ее необычные реакции на внешние воздействия среды. Неравновесные системы обретают способность воспринимать различия во внешней среде и “учитывать” их в своем функционировании. Так, некоторые воздействия, хотя и более слабые, но могут оказывать большее воздействие на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: в нелинейных системах возможны ситуации, когда совместные действия причин А и В приводят к эффектам, которые не имеют ничего общего с результатами воздействия А и В по отдельности.

Процессы, происходящие в нелинейных системах, часто имеют пороговый характер - при плавном изменении внешних условий поведение системы изменяется скачком. Другими словами, в состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих радикальному качественному изменению этой структуры.

Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях могут иногда создаваться отношения обратной положительной связи между системой и ее средой. Положительная обратная связь означает, что система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые, в свою очередь, обратно воздействуют на изменения в самой этой системе. (Примером может служить ситуация, когда в ходе химической реакции или какого-то другого процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.

 

6.3 Диссипативность.

Открытые неравновесные системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние - диссипативность.

Диссипативность - это качественно своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Неравновесное протекание множества микропроцессов приобретает некоторую интегративную результирующую на макроуровне, которая качественно отличается от того, что происходит с каждым отдельным ее микроэлементом. Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые типы структур, может совершаться переход от хаоса и беспорядка к порядку и организации, возникать новые динамические состояния материи.

Диссипативность проявляется в различных формах. И в способности “забывать” детали некоторых внешних воздействий, И в факторе “естественного отбора” среди множества микропроцессов, разрушающем то, что не отвечает общей тенденции развития. И в факторе когерентности (согласованности) микропроцессов, устанавливающем в них некий общий темп развития и др.

Понятие диссипативности тесно связано с понятием о “параметрах порядка”. Самоорганизующиеся системы - это обычно очень сложные открытые системы, которые характеризуются огромным числом степеней свободы. Однако далеко не все степени свободы системы одинаково важны для ее функционирования. С течением времени в системе выделяется небольшое количество ведущих, определяющих степеней свободы, к которым “подстраиваются” остальные. Такие основные степени свободы системы получили название “параметров порядка”.

Параметры порядка отражают содержание основания неравновесной системы. В процессе самоорганизации возникает множество новых свойств и состояний. И очень важно, что, обычно, соотношения, связывающие параметры порядка, оказываются намного проще, чем математические модели, в которых дается детальное описание всей новой системы. Это делает задачу определения параметров порядка одной из главных при конкретном моделировании самоорганизующихся систем.

 

7. Закономерности самоорганизации.

Главная идея синергетики - это идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации. Решающим фактором самоорганизации является образование петли положительной обратной связи. С образованием такого типа связи системы и среды система начнет  самоорганизовываться и будет противостоять тенденции ее разрушения средой. Например, в химии аналогичное явление принято называть автокатализом. В неорганической химии автокаталитические реакции встречаются редко, но, как показали исследования послед0них десятилетий по молекулярной биологии, петли положительной обратной связи (вместе с другими связями - взаимный катализ, отрицательная обратная связь и др.) составляют самую основу жизни.

Информация о работе Свойства пространства и времени