Автор работы: Пользователь скрыл имя, 24 Сентября 2014 в 18:48, курсовая работа
Под системой массового обслуживания (СМО) понимают динамическую систему, предназначенную для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы.
Модели СМО удобны для описания отдельных подсистем современных вычислительных систем, таких как подсистема процессор - основная память, канал ввода-вывода и т. д. Вычислительная система в целом представляет собой совокупность взаимосвязанных подсистем, взаимодействие которых носит вероятностный характер.
ВВЕДЕНИЕ 3
1. ОСНОВЫ ТЕОРИИ МАССОВОГО ОБСЛУЖИВАНИЯ 4
1.2 Понятие случайного процесса 4
1.2 Задачи теории массового обслуживания 5
1.3 Классификация систем массового обслуживания 6
2. СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ 8
2.1 Одноканальная СМО с ожиданием 8
2.2 Многоканальная СМО с ожиданием 14
ЗАКЛЮЧЕНИЕ 23
СПИСОК ЛИТЕРАТУРЫ 24
Учреждение образования
«Брестский государственный университет
имени А.С. Пушкина»
Кафедра математического моделирования
Курсовая работа
СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ
Выполнил:
студент юридического факультета, специальности «Бизнес-администрирование
Допущен к защите:
Брест, 2012
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
1. ОСНОВЫ ТЕОРИИ МАССОВОГО ОБСЛУЖИВАНИЯ 4
1.2 Понятие случайного процесса 4
1.2 Задачи теории массового обслуживания 5
1.3 Классификация систем массового обслуживания 6
2. СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ 8
2.1 Одноканальная СМО с ожиданием 8
2.2 Многоканальная СМО с ожиданием 14
ЗАКЛЮЧЕНИЕ 23
СПИСОК ЛИТЕРАТУРЫ 24
ВВЕДЕНИЕ
Под системой массового обслуживания (СМО) понимают динамическую систему, предназначенную для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы.
Модели СМО удобны для описания отдельных подсистем современных вычислительных систем, таких как подсистема процессор - основная память, канал ввода-вывода и т. д. Вычислительная система в целом представляет собой совокупность взаимосвязанных подсистем, взаимодействие которых носит вероятностный характер. Заявка на решение некоторой задачи, поступающая в вычислительную систему, проходит последовательность этапов счета, обращения к внешним запоминающим устройствам и устройствам ввода-вывода. После выполнения некоторой последовательности таких этапов, число и продолжительность которых зависит от трудоемкости программы, заявка считается обслуженной и покидает вычислительную систему. Таким образом, вычислительную систему в целом можно представлять совокупностью СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств, входящих в состав системы.
Совокупность взаимосвязанных СМО называется сетью массового обслуживания (стохастической сетью).
Для начала мы рассмотрим основы теории СМО, затем перейдем к ознакомлению в подробном содержании к СМО с ожиданием и замкнутым СМО. Также в курс включена практическая часть, в которой мы подробно познакомимся с тем, как применить теорию на практике.
1. ОСНОВЫ ТЕОРИИ МАССОВОГО ОБСЛУЖИВАНИЯ
Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:
Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.
Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.
Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности.
Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».
1.1 Понятие случайного процесса
Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.
Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс, если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.
Примеры:
1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.
2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.
1.2 Задачи теории массового обслуживания
Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, станочные и другие технологические системы, системы управления гибких производственных систем и т.д.
Каждая СМО состоит из какого–то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого–то потока заявок (требований), поступающих в какие-то случайные моменты времени.
Обслуживание заявки продолжается какое–то, вообще говоря, случайное время, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени обслуживания приводит к тому, что в какие–то периоды времени на входе СМО скапливается излишне большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными). В другие же периоды СМО будет работать с недогрузкой или вообще простаивать.
Процесс работы СМО – случайный процесс с дискретными состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких-то событий (прихода новой заявки, окончания обслуживания, момента, когда заявка, которой надоело ждать, покидает очередь).
Предмет теории массового обслуживания – построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.
Математический анализ работы СМО очень облегчается, если процесс этой работы марковский, т.е. потоки событий, переводящие систему из состояния в состояние – простейшие. Иначе математическое описание процесса очень усложняется и его редко удается довести до конкретных аналитических зависимостей.
1.3 Классификация систем массового обслуживания
Первое деление (по наличию очередей):
В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.
В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.
СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».
Итак, например, рассматриваются следующие СМО:
Кроме этого СМО делятся на открытые СМО и замкнутые СМО.
В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.
Классификация СМО далеко не ограничивается приведенными разновидностями, но этого достаточно.
2. СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ
2.1 Одноканальная СМО с ожиданием
Рассмотрим простейшую СМО с ожиданием — одноканальную систему (n - 1), в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (т.е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.
Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом m, т.е. если заявка пришла в момент, когда в очереди уже стоят m-заявок, она покидает систему не обслуженной. В дальнейшем, устремив m к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.
Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):
— канал свободен;
— канал занят, очереди нет;
— канал занят, одна заявка стоит в очереди;
— канал занят, k-1 заявок стоят в очереди;
— канал занят, т-заявок стоят в очереди.
ГСП показан на рис. 1. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны , а справа налево — . Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево — поток «освобождений» занятого канала, имеющий интенсивность (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).
Рисунок 1. Одноканальная СМО с ожиданием
Изображенная на рис. 1 схема представляет собой схему размножения и гибели. Напишем выражения для предельных вероятностей состояний:
или с использованием: :
Последняя строка в (2) содержит геометрическую прогрессию с первым членом 1 и знаменателем р, откуда получаем:
в связи с чем предельные вероятности принимают вид:
Выражение (3) справедливо только при < 1 (при = 1 она дает неопределенность вида 0/0). Сумма геометрической прогрессии со знаменателем = 1 равна m+2, и в этом случае:
Определим характеристики СМО: вероятность отказа , относительную пропускную способность q, абсолютную пропускную способность А, среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО .
Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все т-мест в очереди тоже:
Относительная пропускная способность:
Абсолютная пропускная способность:
Средняя длина очереди. Найдем среднее число -заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины R—числа заявок, находящихся в очереди:
С вероятностью в очереди стоит одна заявка, с вероятностью — две заявки, вообще с вероятностью в очереди стоят k-1 заявок, и т.д., откуда:
Поскольку , сумму в (7) можно трактовать как производную по от суммы геометрической прогрессии:
Подставляя данное выражение в (7) и используя из (4), окончательно получаем:
Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа -заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где — среднее число заявок, находящихся под обслуживанием, а k известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться 0 (с вероятностью ) или 1 (с вероятностью 1 - ), откуда:
и среднее число заявок, связанных с СМО, равно:
Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т.д.
Если же k=m+1, т.е. когда вновь приходящая заявка застает канал обслуживания занятым и m-заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:
если подставить сюда выражения для вероятностей (4), получим:
Здесь использованы соотношения (7), (8) (производная геометрической прогрессии), а также из (4). Сравнивая это выражение с (8), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.
Информация о работе Система массового обслуживания с ожиданием