Основы имитационного моделирования

Автор работы: Пользователь скрыл имя, 28 Октября 2014 в 21:13, реферат

Краткое описание

В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории – неограниченно большое) число факторов

Содержание

1. Основы имитационного моделирования 5
1.1. Суть имитационного моделирования. Основные понятия. 5
1.2. Дискретно-событийное моделирование 8
1.3. Непрерывное моделирование 13
Список литературы. 18

Прикрепленные файлы: 1 файл

Имитационнон моделирование.doc

— 284.00 Кб (Скачать документ)

 

Содержание

1. Основы имитационного моделирования                                                      5

1.1. Суть имитационного  моделирования. Основные понятия.                      5

1.2. Дискретно-событийное  моделирование                                                                         8

1.3. Непрерывное моделирование                                                                                         13

Список литературы.                                                                                          18

 

Введение.

В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории – неограниченно большое) число факторов. Но и у них – свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать «на ощупь», путем догадок и проб. Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей. Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения – если не оптимальные, то почти оптимальные.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Основы имитационного  моделирования

 

1.1. Суть имитационного  моделирования. Основные понятия.

 

Устройство или процесс обычно именуется системой. Для научного исследования системы мы прибегаем к определенным допущениям, касающимся ее функционирования. Эти допущения, как правило, имеющие вид математических или логических отношений, составляют модель, с помощью которой можно получить представление о поведении соответствующей системы.

Если отношения, которые образуют модель, достаточно просты для получения точной информации по интересующим нас вопросам, то можно использовать математические методы. Такого рода решение называется аналитическим. Однако большинство существующих систем являются очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие модели следует изучать с помощью моделирования. При моделировании компьютер используется для численной оценки модели, а с помощью полученных данных рассчитываются ее реальные характеристики.

Моделирование может, например, использоваться при рассмотрении производственной компанией возможности постройки больших дополнительных помещений для одного из ее заводов, если руководство компании не уверено, что потенциальный рост производительности сможет оправдать затраты на строительство. Невозможно соорудить помещения, а затем убрать их в случае нерентабельности, в то время как моделирование работы завода в его текущем состоянии и с якобы созданными дополнительными помещениями помогает в решении этой проблемы

Имитационное моделирование может применяться в самых различных сферах деятельности. Ниже приведен список задач, при решении которых моделирование особенно эффективно:

  • проектирование и анализ производственных систем;
  • оценка различных систем вооружений и требований к их материально-техническому обеспечению;
  • определение требований к оборудованию и протоколам сетей связи;
  • определение требований к оборудованию и программному обеспечению различных компьютерных систем;
  • проектирование и анализ работы транспортных систем, например аэропортов, автомагистралей, портов и метрополитена;
  • оценка проектов создания различных организаций массового обслуживания, например центров обработки заказов, заведений быстрого питания, больниц, отделений связи;
  • модернизация различных процессов в деловой сфере;
  • определение политики в системах управления запасами;
  • анализ финансовых и экономических систем.

Имитационное моделирование — один из наиболее распространенных методов, а возможно, и самый распространенный метод, исследования операций и теории управления

Более широкому распространению имитационного моделирования воспрепятствовали несколько факторов. Во-первых, модели, применяемые для исследования больших систем, все больше усложняются, что, в свою очередь, затрудняет написание для них компьютерных программ. В последние годы эту задачу удалось существенно облегчить благодаря появлению мощных программных продуктов, автоматически предоставляющих многие элементы, необходимые для «программирования» имитационной модели. Во-вторых, моделирование сложных систем часто требует много компьютерного времени. Однако по мере увеличения быстродействия и снижения стоимости компьютеров данная проблема также постепенно становится решаемой.

Система — это совокупность объектов, например людей или механизмов, функционирующих и взаимодействующих друг с другом для достижения определенной цели. Данное определение предложено Шмидтом и Тейлором [Schmidt and Taylor, 1970].

Состояние системы определяется как совокупность переменных, необходимых для описания системы на определенный момент времени в соответствии с задачами исследования

Существуют системы двух типов: дискретные и непрерывные. В дискретной системе переменные состояния в различные периоды времени меняются мгновенно. Банк можно назвать примером дискретной системы, поскольку переменные состояния, например количество посетителей в банке, меняются только по прибытии нового посетителя, по окончании обслуживания или уходе посетителя, раньше находившегося в банке. В непрерывной системе переменные меняются беспрерывно во времени. Самолет, движущийся в воздухе, может служить примером непрерывной системы, поскольку переменные состояния (например, положение и скорость) меняются постоянно по отношению ко времени. На практике система редко является полностью дискретной или полностью непрерывной. Но в каждой системе, как правило, превалирует один тип изменений, по нему мы и определяем ее либо как дискретную, либо как непрерывную.

В определенные моменты функционирования большинства систем возникает необходимость их исследования с целью получения представления о внутренних отношениях между их компонентами или вычисления их производительности в новых условиях эксплуатации. На рисунке 1 изображены различные способы исследования системы. Рассмотрим их подробнее.

Рисунок 1- Способы исследования системы



 

При наличии возможности физически изменить систему (если это рентабельно) и запустить ее в действие в новых условиях лучше всего поступить именно так, поскольку в этом случае вопрос об адекватности полученного результата исчезает сам собой. Однако часто такой подход неосуществим либо из-за слишком больших затрат на его осуществление, либо в силу разрушительного воздействия на саму систему. Более того, система может и не существовать на самом деле, но мы хотим изучить различные ее конфигурации, чтобы выбрать наиболее эффективный способ выполнения. Примерами таких систем могут служить сети связи или стратегические системы ядерных вооружений. Поэтому необходимо создать модель, представляющую систему, и исследовать ее как заменитель реальной системы. При использовании модели всегда возникает вопрос — действительно ли она в такой степени точно отражает саму систему, чтобы можно было принять решение, основываясь на результатах исследования.

 

1.2. Дискретно-событийное  моделирование

 

Дискретно-событийное моделирование используется для построения модели, отражающей развитие системы во времени, когда состояния переменных меняются мгновенно в конкретные моменты времени. (Говоря математическим языком, система может меняться только в исчислимое количество моментов времени.) В такие моменты времени происходят события, при этом событие определяется как мгновенное возникновение, которое может изменить состояние системы. Хотя теоретически дискретно-событийное моделирование можно осуществлять с помощью вычислений вручную, количество данных, которые должны сохраняться и обрабатываться при моделировании большинства реальных систем, диктует необходимость применения вычислительных машин.

Динамическая природа дискретно-событийных имитационных моделей требует, чтобы мы следили за текущим значением имитационного времени по мере функционирования имитационной модели. Нам необходим также механизм для продвижения имитационного времени от одного значения к другому. В имитационной модели переменная, обеспечивающая текущее значение модельного времени, называется часами модельного времени.

Существует два основных подхода к продвижению модельного времени: продвижение времени от события к событию и продвижение времени с постоянным шагом.

При использовании продвижения времени от события к событию часы модельного времени в исходном состоянии устанавливаются в 0 и определяется время возникновения будущих событий. После этого часы модельного времени переходят на время возникновения ближайшего события, и в этот момент обновляются состояние системы с учетом произошедшего события, а также сведения о времени возникновения будущих событий. Затем часы модельного времени продвигаются ко времени возникновения следующего (нового) ближайшего события, обновляется состояние системы и определяется время будущих событий, и т. д. Процесс продвижения модельного времени от времени возникновения одного события ко времени возникновения другого продолжается до тех пор, пока не будет выполнено какое-либо условие останова, указанное заранее. Поскольку в дискретно-событийной имитационной модели все изменения происходят только во время возникновения событий, периоды бездействия системы просто пропускаются, и часы переводятся со времени возникновения одного события на время возникновения другого.

Хотя моделирование применяется к самым разнообразным реальным системам, все дискретно-событийные имитационные модели включают ряд общих компонентов. Логическая организация этих компонентов позволяет обеспечивать программирование, отладку и последующее изменение программы имитационной модели. В частности, дискретно-собьггийная имитационная модель, которая использует механизм продвижения времени от события к событию и написана на универсальном языке, содержит следующие компоненты:

  • состояние системы — совокупность переменных состояния, необходимых для описания системы в определенный момент времени;
  • часы модельного времени — переменная, указывающая текущее значение модельного времени;
  • список событий — список, содержащий время возникновения каждого последующего типа событий;
  • статистические счетчики — переменные, предназначенные для хранения статистической информации о характеристике системы;
  • программа инициализации — подпрограмма, устанавливающая в исходное состояние имитационную модель в момент времени, равный 0;
  • синхронизирующая программа — подпрограмма, которая отыскивает следующее событие в списке событий и затем переводит часы модельного времени на время возникновения этого события;
  • программа обработки событий — подпрограмма, обновляющая состояние системы, когда происходит событие определенного типа (для каждого типа событий существует отдельная программа обработки событий);
  • библиотечные программы - набор подпрограмм, применяемых для генерации случайных наблюдений из распределений вероятностей, которые были определены как часть имитационной модели;
  • генератор отчетов - подпрограмма, которая считывает оценки (со статистических счетчиков) критериев оценки работы и выдает отчет по окончании моделирования;
  • основная программа — подпрограмма, которая вызывает синхронизирующую программу, для того чтобы определить следующее событие, а затем передает управление соответствующей событийной программе с целью обеспечения заданного обновления состояния системы. Основная программа может также контролировать необходимость прекращения моделирования и вызывать генератор отчетов по его окончании.

Логические отношения (поток управления) между данными компонентами показаны на рисунке 1.2. Моделирование начинается в момент времени, равный 0. При этом основная программа вызывает программу инициализации, которая устанавливает часы модельного времени в 0, затем задает исходное состояние системы, устанавливает в исходное состояние статистические счетчики и инициализирует список событий. После возвращения управления основной программе она вызывает синхронизирующую программу, чтобы определить тип ближайшего события. Если следующим должно произойти событие типа i, часы имитационного времени  переводятся на время возникновения события типа i, и управление возвращается основной программе. Основная программа активизирует программу обработки событий i, при этом происходят три типа действий: первое — обновляется состояние системы в соответствии с произошедшим событием типа i; второе — собирается информация о критериях оценки работы системы путем обновления статистических счетчиков; третье — генерируется время возникновения будущих событий, и информация о нем добавляется в список событий. Часто при определении времени будущих событий возникает необходимость сгенерировать случайные наблюдения из распределения вероятностей; такое наблюдение будем называть случайной величиной. После полного завершения обработки в программе обработки событий i или в основной программе выполняется проверка с целью определить (относительно некоторого условия останова), следует ли прервать моделирование. И если моделирование должно быть завершено, из основной программы вызывается генератор отчета, для того чтобы считать оценки (со статических счетчиков) необходимых критериев работы и создать отчет. Если время прекращения моделирования еще не настало, управление снова передается основной программе, и цикл «основная программа—синхронизирующая программа—основная программа—программа обработки событий—проверка условия прекращения имитации» повторяется до тех пор, пока условие останова не будет выполнено.

Информация о работе Основы имитационного моделирования