Модель производственной функции

Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 22:59, реферат

Краткое описание

Сельскохозяйственная отрасль на мой взгляд является одной из базовой отраслью развитого государства, которая занимается выращиванием различных зерновых культур (а Украина как известно является одним из основных экспортеров зерна, пшеницы и др. зерновых культур). В условиях НТП (научно-технического прогресса) роль сельского хозяйства возрастает в связи с развитием технологий выращивания, с развитием и совершенствованием сельскохозяйственной техники и ростом населения, все это обуславливает интенсивное производство и как следствие потребление продукции сельского хозяйства.
И именно поэтому, в этой курсовой работе я решил попытаться разработать модель производственной функции для сельскохозяйственной отрасли.

Прикрепленные файлы: 1 файл

Модель производственной функции для сельскохозяйственной отрасли.doc

— 1.89 Мб (Скачать документ)

 

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

3,201583

0,180130129

1988

13,787

1,321

4,014

3,862185

0,023047917

1989

15,429

1,392

4,453

4,530545

0,006013299

1990

17,212

1,454

4,869

5,118111

0,062056363

1991

19,042

1,507

5,296

5,623824

0,107468886

1992

20,79

1,568

5,798

6,201843

0,163089243

1993

23,097

1,598

6,233

6,502392

0,072572016

1994

25,108

1,626

6,641

6,781305

0,019685475

1995

27,097

1,667

7,241

7,178965

0,003848315

1996

29,627

1,706

7,854

7,564403

0,083866442

1997

32,362

1,753

8,09

8,025374

0,004176551

1998

35,391

1,778

8,504

8,288275

0,046537103

1999

38,474

1,806

8,879

8,579245

0,089853262

2000

41,779

1,813

9,053

8,680488

0,138764849

2001

45,976

1,855

9,11

9,112134

4,55595E-06

2002

50,354

1,878

9,321

9,371901

0,002590889

2003

55,018

1,898

9,545

9,607423

0,003896665

2004

58,733

1,906

9,539

9,722432

0,033647144

2005

61,935

1,911

9,774

9,80421

0,00091265

2006

66,467

1,926

9,955

9,992481

0,001404816

2007

69,488

1,939

10,1

10,14545

0,002065819


 

Следовательно, теперь мы можем построить ПФ:

 

Y^ = -8,384563 + 0,0112465*K +9,15343789*L

 

Рис.1 Графическое представление результатов аппроксимации производственной функции

 

Квадратичная производственная функция

 

Построим квадратичную производственную функцию вида:

 

       (2)

 

где K – затраты капитала; L – расходы по заработной плате. И функция неувязок имеет вид

 

 

Анализируем исходные данные с помощью «Поиск решения» Microsoft Excel 2003. В результате получаем следующие показатели:

Функция неувязок достигает минимума при:

 

a0

a1

a2

a3

a4

10,65719

-0,02671

-16,62825

-0,00006

8,9660141


 

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

3,556971

0,004765067

1988

13,787

1,321

4,014

3,957216

0,003224444

1989

15,429

1,392

4,453

4,456814

1,45478E-05

1990

17,212

1,454

4,869

4,956672

0,007686313

1991

19,042

1,507

5,296

5,429411

0,017798428

1992

20,79

1,568

5,798

6,045845

0,06142728

1993

23,097

1,598

6,233

6,330639

0,009533385

1994

25,108

1,626

6,641

6,614652

0,000694191

1995

27,097

1,667

7,241

7,083803

0,024710798

1996

29,627

1,706

7,854

7,538203

0,099727837

1997

32,362

1,753

8,09

8,130652

0,001652609

1998

35,391

1,778

8,504

8,412681

0,00833908

1999

38,474

1,806

8,879

8,750258

0,016574426

2000

41,779

1,813

9,053

8,756131

0,08813129

2001

45,976

1,855

9,11

9,303874

0,037587284

2002

50,354

1,878

9,321

9,547923

0,051493886

2003

55,018

1,898

9,545

9,737155

0,036923633

2004

58,733

1,906

9,539

9,751322

0,045080747

2005

61,935

1,911

9,774

9,729603

0,001971064

2006

66,467

1,926

9,955

9,838768

0,013509783

2007

69,488

1,939

10,1

9,966716

0,017764679


 

Следовательно, ПФ имеет  вид:

 

Y^ = 10,65719 - 0,02671*K - 16,62825*L - 0,00006*K2 + 8,9660141*L2

 

 

 

Рис.2 Графическое представление результатов аппроксимации производственной функции

 

Производственная функция  Кобба-Дугласа

 

Производственная функция Кобба-Дугласа при

Построим производственную функцию Кобба-Дугласа вида:

 

,          (3)

 

где K – затраты капитала; L – расходы по заработной плате, при α+β=1. И функция неувязок имеет вид

 

 

Анализируем исходные данные с помощью «Поиск решения» Microsoft Excel 2003. В результате получаем следующие показатели:

 

A

 

 

1,51428

0,358355

0,641646


 

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

4,261998

0,404493704

1988

13,787

1,321

4,014

4,635727

0,386545002

1989

15,429

1,392

4,453

4,991358

0,289829368

1990

17,212

1,454

4,869

5,338037

0,219995285

1991

19,042

1,507

5,296

5,663481

0,135042394

1992

20,79

1,568

5,798

5,995276

0,038917787

1993

23,097

1,598

6,233

6,301843

0,004739403

1994

25,108

1,626

6,641

6,565998

0,005625294

1995

27,097

1,667

7,241

6,85654

0,147809652

1996

29,627

1,706

7,854

7,185243

0,447235307

1997

32,362

1,753

8,09

7,546696

0,295179318

1998

35,391

1,778

8,504

7,863713

0,409967528

1999

38,474

1,806

8,879

8,18429

0,482621959

2000

41,779

1,813

9,053

8,450547

0,36295021

2001

45,976

1,855

9,11

8,874924

0,055260868

2002

50,354

1,878

9,321

9,241757

0,006279478

2003

55,018

1,898

9,545

9,604897

0,003587687

2004

58,733

1,906

9,539

9,859026

0,102416413

2005

61,935

1,911

9,774

10,06527

0,084839983

2006

66,467

1,926

9,955

10,37517

0,176539605

2007

69,488

1,939

10,1

10,58735

0,237509292


 

ПФ примет следующий  вид:

 

Y^ = 1,51428*K 0,358355 *L 0,641646

 

Риc. 3 Графическое представление результатов аппроксимации производственной функции

 

Производственная функция  Кобба-Дугласа при 

 

Построим производственную функцию Кобба-Дугласа вида:

 

,          (4)

 

где K – затраты капитала; L – расходы по заработной плате, при α+β≠1.

и функция неувязок имеет вид

 

 

Анализируем исходные данные с помощью «Поиск решения» Microsoft Excel 2003.

В результате получаем следующие показатели:

Функция неувязок достигает минимума при:

A

1,897142

0,00058832

2,549475


 

Годы

K

L

Y

Y^

(Y-Y^)^2

1987

12,021

1,251

3,626

3,362716

0,069318534

1988

13,787

1,321

4,014

3,863748

0,022575574

1989

15,429

1,392

4,453

4,41574

0,001388299

1990

17,212

1,454

4,869

4,934927

0,004346316

1991

19,042

1,507

5,296

5,406895

0,012297621

1992

20,79

1,568

5,798

5,982806

0,03415343

1993

23,097

1,598

6,233

6,279367

0,002149873

1994

25,108

1,626

6,641

6,564019

0,005926094

1995

27,097

1,667

7,241

6,994586

0,060719804

1996

29,627

1,706

7,854

7,419767

0,1885579

1997

32,362

1,753

8,09

7,952506

0,018904497

1998

35,391

1,778

8,504

8,245287

0,06693267

1999

38,474

1,806

8,879

8,5808

0,088922973

2000

41,779

1,813

9,053

8,666268

0,149561493

2001

45,976

1,855

9,11

9,187851

0,006060771

2002

50,354

1,878

9,321

9,481589

0,025788929

2003

55,018

1,898

9,545

9,741659

0,038674906

2004

58,733

1,906

9,539

9,847063

0,094903007

2005

61,935

1,911

9,774

9,913364

0,019422386

2006

66,467

1,926

9,955

10,11337

0,025082505

2007

69,488

1,939

10,1

10,28859

0,035565711


 

В результате ПФ будет  иметь следующий вид:

 

Y^ = 1,897142*K 0,00058832 *L 2,549475

 

Рис.4 Графическое представление результатов аппроксимации производственной функции

 

Производственная функция  Кобба-Дугласа с учетом НТП при 

 


Построим производственную функцию Кобба-Дугласа с учётом НТП вида:

 

,        (5)

 

где K – затраты капитала; L – расходы по заработной плате, – специальный множитель технического прогресса, p0 – параметр нейтрального НТП (p0>0) при α+β=1. И функция неувязок имеет вид

 

 

Анализируем исходные данные с помощью «Поиск решения» Microsoft Excel 2003.

В результате получаем следующие показатели:

Функция неувязок достигает минимума при:

 

A

p

1,11077

0,49463

0,50537

-0,009


 

t

Годы

K

L

Y

Y^

(Y-Y^)^2

0

1987

12,021

1,251

3,626

4,255462

0,396223037

1

1988

13,787

1,321

4,014

4,639196

0,390869685

2

1989

15,429

1,392

4,453

4,99121

0,289670078

3

1990

17,212

1,454

4,869

5,33781

0,219782385

4

1991

19,042

1,507

5,296

5,662748

0,134504095

5

1992

20,79

1,568

5,798

5,980033

0,033136038

6

1993

23,097

1,598

6,233

6,303323

0,004945302

7

1994

25,108

1,626

6,641

6,567753

0,005365166

8

1995

27,097

1,667

7,241

6,844795

0,156978794

9

1996

29,627

1,706

7,854

7,173191

0,463500994

10

1997

32,362

1,753

8,09

7,529158

0,314544001

11

1998

35,391

1,778

8,504

7,855534

0,420508573

12

1999

38,474

1,806

8,879

8,178033

0,491354634

13

2000

41,779

1,813

9,053

8,458675

0,35322206

14

2001

45,976

1,855

9,11

8,891876

0,047577972

15

2002

50,354

1,878

9,321

9,275526

0,002067921

16

2003

55,018

1,898

9,545

9,65592

0,012303177

17

2004

58,733

1,906

9,539

9,904998

0,133954245

18

2005

61,935

1,911

9,774

10,09099

0,100483383

19

2006

66,467

1,926

9,955

10,39732

0,195646721

20

2007

69,488

1,939

10,1

10,56933

0,220267427

Информация о работе Модель производственной функции