Автор работы: Пользователь скрыл имя, 07 Апреля 2013 в 23:45, творческая работа
Приложения. Методы Тагучи находят все большее применение в последние годы. Примеры значительного улучшения качества, связанного с внедрением этих методов (смотрите, например, Phadke, 1989; Noori, 1989), вызвали интерес к ним американских промышленников. Так, некоторые из ведущих производителей начали использовать их с очень большим успехом. Например, AT&T использует эти методы в производстве очень больших интегральных контуров (ОБИК), компания Форд добилась значительного улучшения качества, используя эти методы (Американский институт снабжения, 1984 по 1988).
Методы Тагучи: робастное планирование эксперимента
Обзор
Приложения. Методы Тагучи находят все большее применение в последние годы. Примеры значительного улучшения качества, связанного с внедрением этих методов (смотрите, например, Phadke, 1989; Noori, 1989), вызвали интерес к ним американских промышленников. Так, некоторые из ведущих производителей начали использовать их с очень большим успехом. Например, AT&T использует эти методы в производстве очень больших интегральных контуров (ОБИК), компания Форд добилась значительного улучшения качества, используя эти методы (Американский институт снабжения, 1984 по 1988).
Обзор. Методы Тагучи находятся во многих отношениях в стороне от традиционных процедур контроля качества (смотрите Контроль качества и Анализ производственных процессов) и промышленного эксперимента. Особенно важными являются следующие понятия:
Эти основные аспекты методов робастного планирования будут обсуждаться в следующих разделах. По этим методам недавно было опубликовано несколько монографий, например, Peace (1993), Phadke (1989), Ross (1988) и Roy (1990), и рекомендуется обращаться к ним для более детального изучения темы. Вводные обзоры идей Тагучи о качестве и его улучшении можно найти в работах Barker (1986), Garvin (1987), Kackar (1986) и Noori (1989).
Функции качества и потерь качества
Что такое качество. Тагучи начинает с вопроса,
что такое качество? Нелегко дать простое
определение качества; однако,
если ваш новый автомобиль теряет скорость
в центре напряженного перекрестка, подвергая
вас и других участников движения риску,
то вы говорите, что ваш автомобиль не обладает высоким
качеством. Понятие противоположное качест
Разрывная функция потерь. Вы можете сформулировать гипотезу об общем классе и форме функции потерь. Предположим, что имеется особая идеальная точка высшего качества; например, превосходный автомобиль без каких-либо проблем с качеством. Обычно в статистическом контроле процессов (СКП, см. также Анализ производственных процессов) принято определять уровень допуска вокруг номинальной идеальной точки производственного процесса. Согласно традиционной точке зрения, используемой в методах СКП, если вы находитесь внутри допуска, у вас не возникает проблем с качеством. Другими словами, внутри зоны допуска потери качества равны нулю. Если вы вышли за его пределы, потери качества объявляются неприемлемыми. Так, согласно традиционной точке зрения, функция потерь качества является разрывной порогообразной функцией: если вы находитесь внутри зоны допуска, потери качества пренебрежимы, а когда вы выходите за его пределы, потери становятся неприемлемыми.
Квадратичная функция потерь. Зададимся вопросом: является ли кусочно-постоянная функция хорошей моделью для потери качества? Вернемся к примеру “превосходного автомобиля”. Имеется ли разница между автомобилем, с которым ничего не случилось в течение года после покупки, и автомобилем, у которого начало что-то немножко барахлить, например, отвалились некоторые крепления и разбились часы на панели (все это входит в гарантийный ремонт, не так ли...)? Если вы когда-либо покупали новый автомобиль, вы очень хорошо знаете, как могут раздражать такие небольшие по общему признанию проблемы с качеством. Точка зрения здесь такова: не является реалистичным предположение о том, что если вы удаляетесь от номинального определения вашего производственного процесса, потери качества равны нулю, если вы находитесь в зоне допуска. Наоборот, если вы не попали точно “в цель”, то потери все же существуют, например, в терминах удовлетворения покупателя. Более того, эти потери, вероятно, не являются линейной функцией отклонения от номинальной спецификации процесса, а являютсяквадратичной функцией арочного типа (вроде перевернутой буквы U). Шум в одном месте вашего автомобиля раздражает, но вы, вероятно, не будете слишком опечалены этим; но добавьте еще пару шумов и, возможно, вы объявите ваш автомобиль “хламом”. Если постепенные отклонения от номинала дают непропорциональное увеличение потерь, то скорее всего это квадратичные увеличения.
Вывод: контроль изменчивости. Если фактически потери качества являются квадратичной функцией отклонения от номинального значения, то цель ваших усилий состоит в том, чтобыминимизировать квадрат отклонения или дисперсию продукта относительно его номинальной (идеальной) спецификации, а не число единиц внутри границы допуска (как это делается в традиционных процедурах анализа процессов).
Отношения (С/Ш) сигнал/шум
Измерение потери качества. Даже если вы заключили, что функция потерь квадратична, вы до сих пор точно не знаете, как измерять сами потери. Однако, на какой бы мере вы ни остановились, она должна отражать квадратичную природу функции.
Сигнал, шум и управляющие факторы. Продукт идеального качества всегда должен откликаться одинаковым образом на управляющие сигналы. Когда вы поворачиваете ключ зажигания автомобиля, то ожидаете, что стартер провернет двигатель, и он заведется. В автомобиле идеального качества процесс зажигания всегда происходит одним и тем же образом, например, после трех поворотов ключа зажигания двигатель заводится. Если в ответ на один и тот же сигнал - поворот ключа зажигания - наблюдается случайная изменчивость процесса, вы имеете дело с качеством, худшим, чем идеальное. Например, из-за таких неконтролируемых факторов, как низкая температура, влажность, изношенность двигателя и так далее последний может иногда завестись только после 20 попыток и даже не завестись совсем. Этот пример иллюстрирует ключевой принцип измерения качества по Тагучи: вам хотелось бы минимизировать изменчивость реакции продукта в ответ на факторы шума, максимизируя при этом изменчивость в ответ на управляющие факторы.
Факторы Шума - это те
факторы, которые находятся вне контроля
оператора. В примере с автомобилем эти
факторы включают колебания температуры,
различия в качестве бензина, изношенность
двигателя и так далее. Управляющие факторы – э
Итак, целью ваших усилий
по улучшению качества является установка
наилучших значений управляющих
С/Ш отношения. Вывод из предыдущего состоит
в том, что качество может быть рассмотрено
с точки зрения отклика продукта на шумы
и управляющие факторы. Идеальный продукт
будет реагировать только на сигналы оператора,
и не будет реагировать на случайный шум
(погоду, температуру, влажность и так
далее). Следовательно, цель ваших усилий
по совершенствованию качества может
рассматриваться как попытка максимизировать
отношение сигнал/шум (С/Ш)
Меньше - лучше. Если вы хотите минимизировать число появлений некоторых дефектов продукта, вычислите следующее отношение С/Ш:
Eta = -10 * log10 [(1/n) * (yi2)] for i = 1 to no. vars see outer arrays
Здесь Eta является результирующим отношением
С/Ш, n - число наблюдений, а y - соответствующая характеристика.
Например, число повреждений окраски автомобиля
могло бы выступать как переменная y и анализироваться
посредством отношения С/Ш. Эффект управляющих
факторов равен нуло, поскольку нуль повреждений
окраски является желаемым состоянием.
Заметим, что отношение С/Ш является выражением
предполагаемой квадратичной фу
Номинальное – наилучшее значение. Здесь вы имеете фиксированную величину сигнала (номинальное значение), и дисперсия вокруг этого значения рассматривается как результат действия шумов:
Eta = 10 * log10 (Mean2/Variance)
Такое отношение сигнал/шум может использоваться, когда идеальное качество совпадает с конкретным номинальным значением. Например, диаметр поршневых колец в двигателе автомобиля должен быть как можно ближе к стандартному, чтобы обеспечить высокое качество двигателя.
Больше - лучше. Примерами такого типа инженерных задач является экономия топлива автомобиля (литров бензина на километр), прочность цементного раствора, сопротивление защитных материалов и так далее. Здесь используется следующее отношение С/Ш:
Eta = -10 * log10 [(1/n) * (1/yi2)] for i = 1 to no. vars see outer arrays
Цель со знаком. Этот тип отношения С/Ш применяется, когда характеристика качества имеет идеальное значение 0 (ноль) и могут встречаться как положительные, так и отрицательные значения качества (отклонения от 0). Например, причиняющее ущерб напряжение в дифференциальных усилителях постоянного тока может быть как положительным, так и отрицательным (смотрите Phadke, 1989). Можно воспользоваться следующим отношением С/Ш для проблем такого типа:
Eta = -10 * log10(s2) for i = 1 to no. vars see outer arrays
где s2 обозначает дисперсию характеристики качества по измерениям (переменным).
Доля дефектов. Это отношение С/Ш используется для минимизации отходов, минимизации доли пациентов, у которых развиваются побочные реакции на препарат, и так далее. Тагучи также ссылается на значения Эта как на значения Омеги. Заметим, что это отношение С/Ш эквивалентно известному преобразованию логит (смотрите главу Нелинейное оценивание):
Eta = -10 * log10[p/(1-p)]
где
p доля дефектных изделий
Упорядоченные категории
(аккумуляционный анализ). В некоторых случаях измерения
характеристики качества могут быть получены
только в терминах категорий. Например,
покупатели могут категоризировать товар
как превосходный, хороший, сре
Ортогональные массивы
Третий аспект робастных планов Тагучи весьма схож с трациционными методами. Тагучи разработал систему табулированных планов, которые позволяют оценить несмещенным (ортогональным) образом максимальное число главных эффектов при помощи минимального числа опытов в эксперименте. Планы на латинских квадратах, 2**(k-p) планы (Планы Плакетта-Бермана, в частности), и Планы Бокса-Бенкена также предназначены для достижения этой цели. Многие стандартные ортогональные массивы, табулированные Тагучи, идентичны дробным факторным двухуровневым планам, планам Плакетта-Бермана, планам Бокса-Бенкена, латинским квадратам, греко-латинским квадратам и так далее.
Анализ планов
Большая часть робастных
планов эквивалентна обычному дисперсионному
анализу (ДА) для соответствующих
отношений С/Ш, в котором игнорируются взаимодействия вт
Анализ отношений С/Ш в стандартных планах. Следует заметить, что все обсуждавшиеся ранее планы (например, 2**(k-p) планы, 3**(k-p) планы, смешанные 2-х и 3-х уровневые планы,латинские квадраты, центральные композиционные планы) могут быть использованы для анализа отношений С/Ш, которые вы вычислили. На самом деле, многие дополнительные диаграммы или другие опции, имеющиеся для указанных планов (например, оценивание квадратичных компонент и так далее), могут оказаться очень полезными при анализе вариабельности (С/Ш отношений) в производственном процессе.
Диаграмма средних. Визуализация итогов эксперимента состоит в нанесении на график средних Эта (С/Ш отношений) по уровням факторов. По этой диаграмме легко могут быть установлены оптимальные значения (то есть наибольшие отношения С/Ш) каждого фактора.
Проверочные или тестовые эксперименты. Для целей предсказания вы можете вычислить ожидаемое отношение С/Ш, при фиксировании пользователем определенных комбинаций установок факторов (игнорируя факторы, отнесенные в член ошибок). Эти предсказанные отношения С/Ш могут быть затем использованы для проведения проверочного эксперимента, в котором инженер действительно настраивает машину соответственно и сравнивает результаты наблюдаемого отношения С/Ш с предсказанным из предыдущего эксперимента отношением С/Ш. Если случаются большие отклонения, нужно сделать вывод, что модель простых главных эффектов не подходит.
В таких случаях Тагучи рекомендует преобразование зависимой переменной для обеспечения аддитивности факторов, то есть попытаться “заставить” модель главных эффектов соответствовать (Taguchi, 1987). Phadke (1989, глава 6) также детально обсуждает методы обеспечения аддитивности факторов.
Аккумуляционный анализ
Для анализа упорядоченных категориальных данных дисперсионный анализ непригоден. Вместо него модуль Планирование эксперимента представит кумулятивный график числа наблюдений в каждой категории. Для каждого уровня фактора программа выведет накопленную (кумулятивную) долю числа дефектных изделий. Таким образом, эта диаграмма дает ценную информацию относительно распределения категориальных отсчетов при различных значениях факторов.
Выводы
Вначале вы должны определить
факторы плана или управляющие
Информация о работе Методы Тагучи: робастное планирование эксперимента