Автор работы: Пользователь скрыл имя, 10 Ноября 2013 в 14:49, реферат
С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
Математическая модель — это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования — исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование — это еще и метод познания окружающего мира, дающий возможность управлять им.
МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ
(НАЦИОНАЛЬНЫЙ
КАФЕДРА ПРИКЛАДНОЙ ИНФОРМАТИКИ
Реферат по дисциплине
«Разработка САПР»
на тему
«Математические модели»
Выполнила: ст. гр. 06-421 Абрамова М.А.
Проверил: проф. каф.609 Падалко С.Н.
МОСКВА – 2013
С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
Математическая модель — это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования — исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование — это еще и метод познания окружающего мира, дающий возможность управлять им.
Математическая модель – система, совокупность элементов (переменных) и связей между ними (формул). Компоненты модели классифицируются в зависимости от их природы и связей. К переменным относятся числа, функции и лингвистические переменные. Модель принимает вид отображения одних переменных в другие: .
|
|
|
число |
число |
функция |
функция |
число |
функционал |
функция |
функция |
интегро-дифференциальные операторы |
лингвистические переменные |
число, функция, лингвистические переменные |
логико-линвистичные отношения |
Множество отношений переменных модели, как правило, связано: выходы одних отношений являются входами других.
Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.
1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.
2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.
3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.
4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.
5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.
Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие — как функции от этих величин.
Структура ММ — общий вид математических соотношений модели без конкретизации числовых значений фигурирующих в них параметров. Структура модели может быть представлена также в графической форме, например в виде эквивалентной схемы или графа. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф — это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).
По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.
Транспортная задача.
В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго — 70 т на заводы, причем на первый — 40 т, а на второй — 80 т.
Обозначим через aij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть
a11 = 1,2 р., a12 = 1,6 р., a21 = 0,8 р., a22 = 1 р.
Как нужно спланировать перевозки, чтобы их стоимость была минимальной?
Придадим задаче математическую формулировку. Обозначим через x1 и x2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x3 и x4 — со второго склада на первый и второй заводы соответственно. Тогда:
x1 + x2 = 50, x3 + x4 = 70, x1 + x3 = 40, x2 + x4 = 80. (1)
Общая стоимость всех перевозок определяется формулой
f = 1,2x1 + 1,6x2 + 0,8x3 + x4.
С математической точки зрения, задача заключается в том, чтобы найти четыре числа x1, x2, x3 и x4, удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что
x1 = x4 – 30, x2 = 80 – x4, x3 = 70 – x4, (2)
а x4 не может быть определено однозначно. Так как xi ³0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30£x4£70. Подставляя выражение для x1, x2, x3 в формулу для f, получим
f = 148 – 0,2x4.
Легко видеть, что минимум этой функции достигается при максимально возможном значении x4, то есть при x4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x1 = 40, x2 = 10, x3 = 0.
Математические модели обычно обладают важным свойством универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в -образном сосуде, изменение силы тока в колебательном контуре или колебания популяций биологических видов. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений.
Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать ее поведение. Например, определение частоты колебаний гармонического осциллятора при известном значении параметра - прямая задача математического моделирования.
Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с ее моделью. Еще одна обратная задача: подобрать параметры модели таким образом, чтобы она удовлетворяла каким-то заданным условиям — такие задачи требуется решать при проектировании систем.