Контрольная работа по "Матиматике"

Автор работы: Пользователь скрыл имя, 05 Ноября 2014 в 10:22, контрольная работа

Краткое описание

Найти минимальное и максимальное значение целевой функции графическим методом. Решить задачу графическим методом

Содержание

Задание на контрольную работу………………………………………………... 3
Задача 1…………………………………………………………………………... 5
Задача 2…………………………………………………………………………... 7
Задача 3…………………………………………………………………………... 9
Задача 4…………………………………………………………………………... 16
Библиографический список…………………………………………………... 19

Прикрепленные файлы: 1 файл

ОММСЭП.docx

— 84.96 Кб (Скачать документ)

Ячейка а4,b4 становится свободной.

M =

0


 

 

200


400


100


200


200


     

200

100


 

100

 

0

200


200

0

   

400


 

300

100

 

Итерация: 4 Рабочая матрица затрат с пересчитанными потенциалами и оценкам.

 

b1


b2


b3


b4


 

a1


2

6

12

2

u1=

2


a2


1

3

6

4

u2=

4


a3


3

5

0

0

u3=

6


a4


2

4

3

3

u4=

5


 

v1=

-3


v2=

-1


v3=

-2


v4=

0


 

В приведенной выше таблице нет отрицательных оценок (план улучшить нельзя), следовательно достигнуто оптимальное решение.

 

200


400


100


200


200


   
   

   
   

   
   

200

 
 

2


100


   
   

100

 
 

3


   
   

0

 
 

4


200


200

 
 

3


0

 
 

5


   
   

   
   

400


   
   

300

 
 

4


100

 
 

3


   
   


Общие затраты на перевозку всей продукции, для оптимального плана составляют: 

Pопт=

200*2+100*3+0*4+200*3+0*5+300*4+100*3=2800


 

Ответ: Ропт=2800

 

ЗАДАЧА 4

 

Решение:

1. Проверим продуктивность матрицы  затрат

Существует несколько критериев продуктивности матрицы А.

1. Матрица  А продуктивна, если максимум  сумм элементов ее столбцов  не превосходит единицы, причем  хотя бы для одного из столбцов  сумма элементов строго меньше  единицы.

2. Для  того чтобы обеспечить положительный  конечный выпуск по всем отраслям  необходимо и достаточно, чтобы  выполнялось одно из перечисленных  ниже условий:

3. Определитель  матрицы (E - A) не равен нулю, т.е. матрица (E- A) имеет обратную матрицу (E - A)-1.

4. Наибольшее  по модулю собственное значение  матрицы А, т.е. решение уравнения |λE - A| = 0 строго меньше единицы.

5. Все  главные миноры матрицы (E - A) порядка  от 1 до n, положительны.

 

Матрица A имеет неотрицательные элементы и удовлетворяет критерию продуктивности (при любом j сумма элементов столбца ∑aij ≤ 1.

I. Определим  матрицу коэффициентов полных  материальных затрат приближенно, учитывая косвенные затраты до 2-го порядка включительно.

а) Матрица коэффициентов косвенных затрат 1-го порядка равна:

A1 = A2 = 02;03;01;03;01;02;01;02;03 • 02;03;01;03;01;02;01;02;03 = 014;011;011;011;014;011;011;011;014

б) Матрица коэффициентов косвенных затрат 2-го порядка равна:

A2 = A3 = 02;03;01;03;01;02;01;02;03 • 014;011;011;011;014;011;011;011;014 = 0072;0075;0069;0075;0069;0072;0069;0072;0075

Матрица коэффициентов полных затрат приближенно равна:

B = E + A + A2 + A3 = 1412;0485;0279;0485;1309;0382;0279;0382;1515

II. Определим  матрицу коэффициентов полных  затрат точно с помощью формул  обращения невырожденных матриц.

Коэффициент полных затрат (bij) показывает, какое количество продукции i-й отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j-й отрасли.

Полные затраты отражают использование ресурса на всех этапах изготовления и равны сумме прямых и косвенных затрат на всех предыдущих стадиях производства продукции.

а) Находим матрицу (E-A):

E-A = 08;-03;-01;-03;09;-02;-01;-02;07

б) Вычисляем обратную матрицу (E-A)-1:

Запишем матрицу в виде:

08;-03;-01;-03;09;-02;-01;-02;07

Главный определитель

∆=0.8•(0.9•0.7-(-0.2•(-0.2)))-(-0.3•(-0.3•0.7-(-0.2•(-0.1))))+(-0.1•(-0.3•(-0.2)-0.9•(-0.1)))=0.388

Определитель отличен от нуля, следовательно матрица является невырожденной и для нее можно найти обратную матрицу A-1.

Транспонированная матрица.

BT=08;-03;-01;-03;09;-02;-01;-02;07

Найдем алгебраические дополнения.

A11=-11+1|09;-02;-02;07

∆1,1=(0.9•0.7-(-0.2•(-0.2)))=0.59

A12=-11+2|-03;-02;-01;07

∆1,2=-(-0.3•0.7-(-0.1•(-0.2)))=0.23

A13=-11+3|-03;09;-01;-02

∆1,3=(-0.3•(-0.2)-(-0.1•0.9))=0.15

A21=-12+1|-03;-01;-02;07

∆2,1=-(-0.3•0.7-(-0.2•(-0.1)))=0.23

A22=-12+2|08;-01;-01;07

∆2,2=(0.8•0.7-(-0.1•(-0.1)))=0.55

A23=-12+3|08;-03;-01;-02

∆2,3=-(0.8•(-0.2)-(-0.1•(-0.3)))=0.19

A31=-13+1|-03;-01;09;-02

∆3,1=(-0.3•(-0.2)-0.9•(-0.1))=0.15

A32=-13+2|08;-01;-03;-02

∆3,2=-(0.8•(-0.2)-(-0.3•(-0.1)))=0.19

A33=-13+3|08;-03;-03;09

∆3,3=(0.8•0.9-(-0.3•(-0.3)))=0.63

Обратная матрица.

B-1=1;0.388059;023;015;023;055;019;015;019;063

B-1=1521;0593;0387;0593;1418;049;0387;049;1624

 

2. Найдем величины валовой продукции 3-х отраслей

X = B-1•Y = 1521;0593;0387;0593;1418;049;0387;049;1624 • 240;20;60 = 400;200;200

 

3. Для определения элементов первого квадранта материального межотраслевого баланса воспользуемся формулой xij = aij • Xj.

Составляющие третьего квадранта (условно-чистая продукция) находятся как разность между объемами валовой продукции и суммами элементов соответствующих столбцов найденного первого квадранта.

Межотраслевой баланс состоит из четырех квадрантов (табл.). Первый квадрант отражает межотраслевые потоки продукции. Второй характеризует отраслевую материальную структуру национального дохода.

Третий представляет национальный доход как стоимость условно-чистой продукции (Zj), равной сумме амортизации (cj), оплаты труда (vj) и чистого дохода j-й отрасли (mj). Четвертый квадрант показывает конечное распределение и использование национального дохода.

 

Производящие отрасли

Потребляющие отрасли

 

 

 

 

Конечный продукт

Валовый продукт

 

 

1

2

3

 

 

 

 

1

80

60

20

240

400

2

120

20

40

20

200

3

40

40

60

60

200

Чистый доход

160

80

80

320

 

 

Валовый продукт

400

200

200

 

 

800


 

Проверим основное балансовое соотношение по формуле основного балансового соотношения ∑yi = ∑zj. (320)

Равновесные цены определим по формуле Р=BTV, а доли добавленной стоимости рассчитаем по формуле vj=zj/xj или как vj=1-∑aij. Таким образом, доли добавленной стоимости по отраслям равны:

V1 = 0.4

V2 = 0.4

V3 = 0.4

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 

  1. Владимирский Б.М., Горстко А.Б., Ерусалимский Я.М. Математика: Общий курс. - СПб.: Издательство "Лань", 2002. - 960 с.
  2. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник / Под общ. ред. д.э.н., проф. А.В. Сидоровича; МГУ им. М.В. Ломоносова. - 3-е изд., перераб. - М.: Издательство "Дело и Сервис", 2001. - 368 с.
  3. Лавриненко В.Н. Исследование социально-экономических и политических процессов / В.Н. Лавриненко, Л.М.Путилова – М.: ИНФРА-М, 2010.
  4. Трояновский В.М. Математическое моделирование в менеджменте: Учебное пособие. - М.:Русская деловая литература, 1999. - 240 с.
  5. Рой О.М. Исследования социально-экономических и политических процессов: практикум/ О.М. Рой, A.M. Киселева.- Питер, 2007.- 238 с.
  6. Шикин Е.В., Чхартишвили А.Т. Математические методы и модели в управлении: Учебное пособие. - М.: Дело, 2000. - 440 с.

 

 


Информация о работе Контрольная работа по "Матиматике"