Автор работы: Пользователь скрыл имя, 11 Декабря 2011 в 21:07, курсовая работа
Для того, чтобы наглядно продемонстрировать важность использования экономико-математических моделей в управлении предприятием предполагается решить следующие задачи:
представить теоретико-методологические особенности применения экономико-математических моделей в процессе управления предприятия;
на основе представленных теоретических данных решить практическую задачу оптимизации производственной деятельности предприятия.
Введение 3
1. Математическая теория производства 5
2. Теоретические вопросы оптимизации производства структуры сельскохозяйственного предприятия 8
2.1 Сельскохозяйственное предприятие как объект экономико-математического моделирования 8
2.2 Экономическая необходимость оптимизации производственной структуры сельскохозяйственного предприятия 9
2.3 Экономико-математические модели оптимизации производственной структуры сельскохозяйственного предприятия 11
3. Оптимизация структуры производства сельскохозяйственного предприятия. 18
3.1 Постановка экономико-математической задачи оптимизации структуры производства сельскохозяйственного предприятия. 18
3.2 Методика подготовки технико-экономических коэффициентов и объектов ограничений матрицы задачи. 26
3.3 Оптимальный план структуры производства сельскохозяйственного предприятия. 29
Заключение 31
Список использованной литературы: 32
В подготовительный блок включены модели, предназначенные для расчетов прогнозирования уровня и темпов роста урожайности сельскохозяйственных культур, продуктивности животных, себестоимости продукции, фондоёмкости, производительности труда, объемов производственных ресурсов — земельных, трудовых, основных фондов, капитальных вложений; условий и каналов реализации готовой продукции. Выходная информация совокупности моделей подготовительного комплекса является входной для моделей центрального блока.
В свою очередь, выходная информация моделей центрального блока служит входной для заключительного, или детализирующего, блока: оптимизации состава и использования машинно-тракторного и автомобильного парка, промышленного оборудования консервного производства, плана перевозок грузов и др.
Также
при моделировании
Применение экономико-математических методов и средств вычислительной техники позволяет получить оптимальный план сочетания отраслей агропромышленного предприятия, обеспечивающий наиболее эффективное использование трудовых, материальных и финансовых ресурсов, а также производственных мощностей перерабатывающего предприятия (цеха, завода). Критериями оптимальности в данной задаче могут быть: максимум валовой (товарной) продукции; максимум прибыли (чистого дохода); минимум материально-денежных затрат (при фиксированных объемах производства продукции).
В процессе решения определяют значения следующих групп переменных величин: площади многолетних насаждений и сельскохозяйственных культур; поголовье скота и птицы; объем производства продукции перерабатывающего предприятия; потребность в расширении производственных мощностей и емкостей завода; объем производства вторичного сырья и продукции его переработки; стоимостные показатели; оптимальный вариант использования сельскохозяйственного сырья и технологий его переработки и др.
Наиболее
ответственным моментом в математическом
моделировании экономических
Постановка задачи предполагает ее четкую экономическую формулировку, включающую цель решения, установление планового периода, выяснение известных параметров объекта и тех, количественное значение которых нужно определить, их производственно-экономических связей, а также множества факторов и условий, отражающих моделируемый процесс.
Конечной
целью решения экономико-
В качестве предпочтительных критериев оптимальности, отвечающих целям развития сельскохозяйственных предприятий, могут выступать следующие показатели:
-
максимум прибыли,
- максимум чистого дохода, определяемый как разность между стоимостью валовой продукции и суммой всех производственных затрат;
-
максимум товарной (реализованной)
продукции; максимум валовой
При
решении отдельных экономико-
Важным
этапом при решении экономико-
В постановке задачи должен содержаться ясный ответ на вопрос, что в ней является неизвестным, иначе говоря, какие переменные величины и их численные значения необходимо найти в результате ее решения.
Во-первых, перечень переменных величин всегда должен отражать характер, основное содержание моделируемого экономического процесса. Например, при моделировании рационов кормления в качестве переменных будут выступать виды кормов и кормовых добавок, из которых составляется рацион для конкретного животного. Решив такую задачу с помощью средств вычислительной техники, определяют, какое количество каждого вида кормов, входящих в перечень переменных, должно быть в оптимальном рационе.
Аналогично
при моделировании
Во-вторых, помимо характера моделируемого процесса, количество и состав переменных в каждой экономико-математической модели определяется вычислительными возможностями компьютера и программ, на котором предполагается осуществить решение конкретной задачи. Чем больше мощность вычислительной техники, тем большее количество переменных и ограничений можно включить в задачу. В-третьих, количество переменных зависит от выбора планового периода процесса (долгосрочный, среднесрочный, текущий), который оказывает существенное влияние на степень детализации состава переменных. Чем меньше период, на который составляется экономико-математическая модель, тем больше детализация переменных. При планировании на более отдаленную перспективу (пятилетний план, план организационно-хозяйственного устройства) необходимости в столь подробной детализации переменных нет, и поэтому сельскохозяйственные культуры вводятся в разрезе групп, а поголовье животных — в пересчете на структурные или условные головы.
В-четвертых, количество переменных зависит также от того, насколько подробно в модели должны быть представлены следующие признаки:
По
указанным признакам
Переменные по животноводству могут быть дифференцированы также и по вариантам кормления, уровню продуктивности, удельному весу маточного поголовья, видам построек, в которых размещен скот.
По экономической роли в моделируемом процессе все переменные величины классифицируются на основные и вспомогательные.
Основные переменные обозначают сельскохозяйственные культуры, отрасли животноводства, сельскохозяйственную технику, минеральные удобрения, виды кормов, то есть те величины, которые определяют основное содержание моделируемого процесса в каждом конкретном случае.
Вспомогательные переменные привлекают специально для облегчения математической формулировки условий, для определения расчетных величин (объемов ресурсов, показателей эффективности производства и т. д.).
Для каждой переменной величины устанавливается определенная размерность. Целесообразно иметь одинаковую размерность по однотипным группам переменных. Так, если сельскохозяйственные культуры принято измерять в гектарах посева, то нужно, чтобы ни одна из отраслей растениеводства не имела размерности в центнерах. Размерность в гектарах еще удобна и потому, что в годовых отчетах и производственно-финансовых планах информация, необходимая для построения экономико-математических моделей, чаще всего дана в расчете на 1 га и проводить дополнительные расчеты, как правило, не нужно.
После установления перечня переменных величин необходимо определить состав и количество ограничений, отражающих условия задачи. Как уже подчеркивалось в постановке задачи, ограничения должны отражать те экономические и технологические условия, которые действительно ограничивают возможности производства. Современные компьютеры позволяют решать любые задачи экономики.
Все ограничения по их экономическому значению классифицируются на основные, дополнительные и вспомогательные.
Основные ограничения отражают главные условия задачи. Они накладываются на все или большинство переменных. К ним относятся ограничения по использованию производственных ресурсов (земли, рабочей силы, машинно-тракторного парка, удобрений, денежно-материальных затрат, кормов и т. д.).
Дополнительные ограничения накладываются на небольшое количество переменных величин или отдельные переменные. Обычно они формулируются в виде неравенств, ограничивающих снизу и сверху потребление, множество, элементами которого являются номера ограничений по соотношениям посевных площадей сельскохозяйственных культур.
Ответственным этапом моделирования является процесс сбора и обработки исходной информации. В зависимости от постановки задачи и объекта, по которому эта задача должна быть построена, определяют характер и объем необходимой информации, источники ее сбора и методы обработки.
В качестве источников исходной информации используют годовые отчеты, производственно-финансовые и перспективные планы, планы организационно-хозяйственного устройства, данные первичного учета сельскохозяйственных предприятий, технологические карты по возделыванию и уборке сельскохозяйственных культур и выращиванию животных, а также различные нормативные справочники.
Информация как совокупность необходимых для моделирования сведений об экономическом процессе и объекте должна быть полной, достоверной, доступной и своевременной. Эти качества информации являются обязательными при разработке новых экономико-математических моделей, и результаты решения задач могут быть искажены, если исходные данные недостаточно полны и не точны.
Исходная информация подвергается переработке в конкретные числа, выражающиеся в определенных единицах измерения. Для любой экономико-математической модели эти числа формируются в технико-экономические коэффициенты, коэффициенты целевой функции и константы или объемы ограничений.
После того, когда рассчитаны все технико-экономические коэффициенты, коэффициенты целевой функции и константы (правые части), приступают к построению числовой экономико-математической модели. Она может быть отражена в виде системы линейных соотношений.
Для построения экономико-математической модели целесообразно вначале записать все ограничения в виде системы линейных неравенств и уравнений, а затем уже строить числовую модель в виде таблицы.
Информация о работе Экономико-математические модели производственной деятельности предприятия